| Viewing file:  ec.py (9.59 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
# This file is dual licensed under the terms of the Apache License, Version# 2.0, and the BSD License. See the LICENSE file in the root of this repository
 # for complete details.
 
 from __future__ import absolute_import, division, print_function
 
 import abc
 
 import six
 
 from cryptography import utils
 
 
 @six.add_metaclass(abc.ABCMeta)
 class EllipticCurve(object):
 @abc.abstractproperty
 def name(self):
 """
 The name of the curve. e.g. secp256r1.
 """
 
 @abc.abstractproperty
 def key_size(self):
 """
 Bit size of a secret scalar for the curve.
 """
 
 
 @six.add_metaclass(abc.ABCMeta)
 class EllipticCurveSignatureAlgorithm(object):
 @abc.abstractproperty
 def algorithm(self):
 """
 The digest algorithm used with this signature.
 """
 
 
 @six.add_metaclass(abc.ABCMeta)
 class EllipticCurvePrivateKey(object):
 @abc.abstractmethod
 def signer(self, signature_algorithm):
 """
 Returns an AsymmetricSignatureContext used for signing data.
 """
 
 @abc.abstractmethod
 def exchange(self, algorithm, peer_public_key):
 """
 Performs a key exchange operation using the provided algorithm with the
 provided peer's public key.
 """
 
 @abc.abstractmethod
 def public_key(self):
 """
 The EllipticCurvePublicKey for this private key.
 """
 
 @abc.abstractproperty
 def curve(self):
 """
 The EllipticCurve that this key is on.
 """
 
 @abc.abstractproperty
 def key_size(self):
 """
 Bit size of a secret scalar for the curve.
 """
 
 @abc.abstractproperty
 def sign(self, data, signature_algorithm):
 """
 Signs the data
 """
 
 
 @six.add_metaclass(abc.ABCMeta)
 class EllipticCurvePrivateKeyWithSerialization(EllipticCurvePrivateKey):
 @abc.abstractmethod
 def private_numbers(self):
 """
 Returns an EllipticCurvePrivateNumbers.
 """
 
 @abc.abstractmethod
 def private_bytes(self, encoding, format, encryption_algorithm):
 """
 Returns the key serialized as bytes.
 """
 
 
 @six.add_metaclass(abc.ABCMeta)
 class EllipticCurvePublicKey(object):
 @abc.abstractmethod
 def verifier(self, signature, signature_algorithm):
 """
 Returns an AsymmetricVerificationContext used for signing data.
 """
 
 @abc.abstractproperty
 def curve(self):
 """
 The EllipticCurve that this key is on.
 """
 
 @abc.abstractproperty
 def key_size(self):
 """
 Bit size of a secret scalar for the curve.
 """
 
 @abc.abstractmethod
 def public_numbers(self):
 """
 Returns an EllipticCurvePublicNumbers.
 """
 
 @abc.abstractmethod
 def public_bytes(self, encoding, format):
 """
 Returns the key serialized as bytes.
 """
 
 @abc.abstractmethod
 def verify(self, signature, data, signature_algorithm):
 """
 Verifies the signature of the data.
 """
 
 
 EllipticCurvePublicKeyWithSerialization = EllipticCurvePublicKey
 
 
 @utils.register_interface(EllipticCurve)
 class SECT571R1(object):
 name = "sect571r1"
 key_size = 571
 
 
 @utils.register_interface(EllipticCurve)
 class SECT409R1(object):
 name = "sect409r1"
 key_size = 409
 
 
 @utils.register_interface(EllipticCurve)
 class SECT283R1(object):
 name = "sect283r1"
 key_size = 283
 
 
 @utils.register_interface(EllipticCurve)
 class SECT233R1(object):
 name = "sect233r1"
 key_size = 233
 
 
 @utils.register_interface(EllipticCurve)
 class SECT163R2(object):
 name = "sect163r2"
 key_size = 163
 
 
 @utils.register_interface(EllipticCurve)
 class SECT571K1(object):
 name = "sect571k1"
 key_size = 571
 
 
 @utils.register_interface(EllipticCurve)
 class SECT409K1(object):
 name = "sect409k1"
 key_size = 409
 
 
 @utils.register_interface(EllipticCurve)
 class SECT283K1(object):
 name = "sect283k1"
 key_size = 283
 
 
 @utils.register_interface(EllipticCurve)
 class SECT233K1(object):
 name = "sect233k1"
 key_size = 233
 
 
 @utils.register_interface(EllipticCurve)
 class SECT163K1(object):
 name = "sect163k1"
 key_size = 163
 
 
 @utils.register_interface(EllipticCurve)
 class SECP521R1(object):
 name = "secp521r1"
 key_size = 521
 
 
 @utils.register_interface(EllipticCurve)
 class SECP384R1(object):
 name = "secp384r1"
 key_size = 384
 
 
 @utils.register_interface(EllipticCurve)
 class SECP256R1(object):
 name = "secp256r1"
 key_size = 256
 
 
 @utils.register_interface(EllipticCurve)
 class SECP256K1(object):
 name = "secp256k1"
 key_size = 256
 
 
 @utils.register_interface(EllipticCurve)
 class SECP224R1(object):
 name = "secp224r1"
 key_size = 224
 
 
 @utils.register_interface(EllipticCurve)
 class SECP192R1(object):
 name = "secp192r1"
 key_size = 192
 
 
 _CURVE_TYPES = {
 "prime192v1": SECP192R1,
 "prime256v1": SECP256R1,
 
 "secp192r1": SECP192R1,
 "secp224r1": SECP224R1,
 "secp256r1": SECP256R1,
 "secp384r1": SECP384R1,
 "secp521r1": SECP521R1,
 "secp256k1": SECP256K1,
 
 "sect163k1": SECT163K1,
 "sect233k1": SECT233K1,
 "sect283k1": SECT283K1,
 "sect409k1": SECT409K1,
 "sect571k1": SECT571K1,
 
 "sect163r2": SECT163R2,
 "sect233r1": SECT233R1,
 "sect283r1": SECT283R1,
 "sect409r1": SECT409R1,
 "sect571r1": SECT571R1,
 }
 
 
 @utils.register_interface(EllipticCurveSignatureAlgorithm)
 class ECDSA(object):
 def __init__(self, algorithm):
 self._algorithm = algorithm
 
 algorithm = utils.read_only_property("_algorithm")
 
 
 def generate_private_key(curve, backend):
 return backend.generate_elliptic_curve_private_key(curve)
 
 
 def derive_private_key(private_value, curve, backend):
 if not isinstance(private_value, six.integer_types):
 raise TypeError("private_value must be an integer type.")
 
 if private_value <= 0:
 raise ValueError("private_value must be a positive integer.")
 
 if not isinstance(curve, EllipticCurve):
 raise TypeError("curve must provide the EllipticCurve interface.")
 
 return backend.derive_elliptic_curve_private_key(private_value, curve)
 
 
 class EllipticCurvePublicNumbers(object):
 def __init__(self, x, y, curve):
 if (
 not isinstance(x, six.integer_types) or
 not isinstance(y, six.integer_types)
 ):
 raise TypeError("x and y must be integers.")
 
 if not isinstance(curve, EllipticCurve):
 raise TypeError("curve must provide the EllipticCurve interface.")
 
 self._y = y
 self._x = x
 self._curve = curve
 
 def public_key(self, backend):
 return backend.load_elliptic_curve_public_numbers(self)
 
 def encode_point(self):
 # key_size is in bits. Convert to bytes and round up
 byte_length = (self.curve.key_size + 7) // 8
 return (
 b'\x04' + utils.int_to_bytes(self.x, byte_length) +
 utils.int_to_bytes(self.y, byte_length)
 )
 
 @classmethod
 def from_encoded_point(cls, curve, data):
 if not isinstance(curve, EllipticCurve):
 raise TypeError("curve must be an EllipticCurve instance")
 
 if data.startswith(b'\x04'):
 # key_size is in bits. Convert to bytes and round up
 byte_length = (curve.key_size + 7) // 8
 if len(data) == 2 * byte_length + 1:
 x = utils.int_from_bytes(data[1:byte_length + 1], 'big')
 y = utils.int_from_bytes(data[byte_length + 1:], 'big')
 return cls(x, y, curve)
 else:
 raise ValueError('Invalid elliptic curve point data length')
 else:
 raise ValueError('Unsupported elliptic curve point type')
 
 curve = utils.read_only_property("_curve")
 x = utils.read_only_property("_x")
 y = utils.read_only_property("_y")
 
 def __eq__(self, other):
 if not isinstance(other, EllipticCurvePublicNumbers):
 return NotImplemented
 
 return (
 self.x == other.x and
 self.y == other.y and
 self.curve.name == other.curve.name and
 self.curve.key_size == other.curve.key_size
 )
 
 def __ne__(self, other):
 return not self == other
 
 def __hash__(self):
 return hash((self.x, self.y, self.curve.name, self.curve.key_size))
 
 def __repr__(self):
 return (
 "<EllipticCurvePublicNumbers(curve={0.curve.name}, x={0.x}, "
 "y={0.y}>".format(self)
 )
 
 
 class EllipticCurvePrivateNumbers(object):
 def __init__(self, private_value, public_numbers):
 if not isinstance(private_value, six.integer_types):
 raise TypeError("private_value must be an integer.")
 
 if not isinstance(public_numbers, EllipticCurvePublicNumbers):
 raise TypeError(
 "public_numbers must be an EllipticCurvePublicNumbers "
 "instance."
 )
 
 self._private_value = private_value
 self._public_numbers = public_numbers
 
 def private_key(self, backend):
 return backend.load_elliptic_curve_private_numbers(self)
 
 private_value = utils.read_only_property("_private_value")
 public_numbers = utils.read_only_property("_public_numbers")
 
 def __eq__(self, other):
 if not isinstance(other, EllipticCurvePrivateNumbers):
 return NotImplemented
 
 return (
 self.private_value == other.private_value and
 self.public_numbers == other.public_numbers
 )
 
 def __ne__(self, other):
 return not self == other
 
 def __hash__(self):
 return hash((self.private_value, self.public_numbers))
 
 
 class ECDH(object):
 pass
 
 |