| Viewing file:  pal.h (53.36 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
#ifndef _ASM_IA64_PAL_H#define _ASM_IA64_PAL_H
 
 /*
 * Processor Abstraction Layer definitions.
 *
 * This is based on Intel IA-64 Architecture Software Developer's Manual rev 1.0
 * chapter 11 IA-64 Processor Abstraction Layer
 *
 * Copyright (C) 1998-2001 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *    Stephane Eranian <eranian@hpl.hp.com>
 * Copyright (C) 1999 VA Linux Systems
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 * Copyright (C) 1999 Srinivasa Prasad Thirumalachar <sprasad@sprasad.engr.sgi.com>
 * Copyright (C) 2008 Silicon Graphics, Inc. (SGI)
 *
 * 99/10/01    davidm    Make sure we pass zero for reserved parameters.
 * 00/03/07    davidm    Updated pal_cache_flush() to be in sync with PAL v2.6.
 * 00/03/23     cfleck  Modified processor min-state save area to match updated PAL & SAL info
 * 00/05/24     eranian Updated to latest PAL spec, fix structures bugs, added
 * 00/05/25    eranian Support for stack calls, and static physical calls
 * 00/06/18    eranian Support for stacked physical calls
 * 06/10/26    rja    Support for Intel Itanium Architecture Software Developer's
 *            Manual Rev 2.2 (Jan 2006)
 */
 
 /*
 * Note that some of these calls use a static-register only calling
 * convention which has nothing to do with the regular calling
 * convention.
 */
 #define PAL_CACHE_FLUSH        1    /* flush i/d cache */
 #define PAL_CACHE_INFO        2    /* get detailed i/d cache info */
 #define PAL_CACHE_INIT        3    /* initialize i/d cache */
 #define PAL_CACHE_SUMMARY    4    /* get summary of cache hierarchy */
 #define PAL_MEM_ATTRIB        5    /* list supported memory attributes */
 #define PAL_PTCE_INFO        6    /* purge TLB info */
 #define PAL_VM_INFO        7    /* return supported virtual memory features */
 #define PAL_VM_SUMMARY        8    /* return summary on supported vm features */
 #define PAL_BUS_GET_FEATURES    9    /* return processor bus interface features settings */
 #define PAL_BUS_SET_FEATURES    10    /* set processor bus features */
 #define PAL_DEBUG_INFO        11    /* get number of debug registers */
 #define PAL_FIXED_ADDR        12    /* get fixed component of processors's directed address */
 #define PAL_FREQ_BASE        13    /* base frequency of the platform */
 #define PAL_FREQ_RATIOS        14    /* ratio of processor, bus and ITC frequency */
 #define PAL_PERF_MON_INFO    15    /* return performance monitor info */
 #define PAL_PLATFORM_ADDR    16    /* set processor interrupt block and IO port space addr */
 #define PAL_PROC_GET_FEATURES    17    /* get configurable processor features & settings */
 #define PAL_PROC_SET_FEATURES    18    /* enable/disable configurable processor features */
 #define PAL_RSE_INFO        19    /* return rse information */
 #define PAL_VERSION        20    /* return version of PAL code */
 #define PAL_MC_CLEAR_LOG    21    /* clear all processor log info */
 #define PAL_MC_DRAIN        22    /* drain operations which could result in an MCA */
 #define PAL_MC_EXPECTED        23    /* set/reset expected MCA indicator */
 #define PAL_MC_DYNAMIC_STATE    24    /* get processor dynamic state */
 #define PAL_MC_ERROR_INFO    25    /* get processor MCA info and static state */
 #define PAL_MC_RESUME        26    /* Return to interrupted process */
 #define PAL_MC_REGISTER_MEM    27    /* Register memory for PAL to use during MCAs and inits */
 #define PAL_HALT        28    /* enter the low power HALT state */
 #define PAL_HALT_LIGHT        29    /* enter the low power light halt state*/
 #define PAL_COPY_INFO        30    /* returns info needed to relocate PAL */
 #define PAL_CACHE_LINE_INIT    31    /* init tags & data of cache line */
 #define PAL_PMI_ENTRYPOINT    32    /* register PMI memory entry points with the processor */
 #define PAL_ENTER_IA_32_ENV    33    /* enter IA-32 system environment */
 #define PAL_VM_PAGE_SIZE    34    /* return vm TC and page walker page sizes */
 
 #define PAL_MEM_FOR_TEST    37    /* get amount of memory needed for late processor test */
 #define PAL_CACHE_PROT_INFO    38    /* get i/d cache protection info */
 #define PAL_REGISTER_INFO    39    /* return AR and CR register information*/
 #define PAL_SHUTDOWN        40    /* enter processor shutdown state */
 #define PAL_PREFETCH_VISIBILITY    41    /* Make Processor Prefetches Visible */
 #define PAL_LOGICAL_TO_PHYSICAL 42    /* returns information on logical to physical processor mapping */
 #define PAL_CACHE_SHARED_INFO    43    /* returns information on caches shared by logical processor */
 #define PAL_GET_HW_POLICY    48    /* Get current hardware resource sharing policy */
 #define PAL_SET_HW_POLICY    49    /* Set current hardware resource sharing policy */
 #define PAL_VP_INFO        50    /* Information about virtual processor features */
 #define PAL_MC_HW_TRACKING    51    /* Hardware tracking status */
 
 #define PAL_COPY_PAL        256    /* relocate PAL procedures and PAL PMI */
 #define PAL_HALT_INFO        257    /* return the low power capabilities of processor */
 #define PAL_TEST_PROC        258    /* perform late processor self-test */
 #define PAL_CACHE_READ        259    /* read tag & data of cacheline for diagnostic testing */
 #define PAL_CACHE_WRITE        260    /* write tag & data of cacheline for diagnostic testing */
 #define PAL_VM_TR_READ        261    /* read contents of translation register */
 #define PAL_GET_PSTATE        262    /* get the current P-state */
 #define PAL_SET_PSTATE        263    /* set the P-state */
 #define PAL_BRAND_INFO        274    /* Processor branding information */
 
 #define PAL_GET_PSTATE_TYPE_LASTSET    0
 #define PAL_GET_PSTATE_TYPE_AVGANDRESET    1
 #define PAL_GET_PSTATE_TYPE_AVGNORESET    2
 #define PAL_GET_PSTATE_TYPE_INSTANT    3
 
 #define PAL_MC_ERROR_INJECT    276    /* Injects processor error or returns injection capabilities */
 
 #ifndef __ASSEMBLY__
 
 #include <linux/types.h>
 #include <asm/fpu.h>
 
 /*
 * Data types needed to pass information into PAL procedures and
 * interpret information returned by them.
 */
 
 /* Return status from the PAL procedure */
 typedef s64                pal_status_t;
 
 #define PAL_STATUS_SUCCESS        0    /* No error */
 #define PAL_STATUS_UNIMPLEMENTED    (-1)    /* Unimplemented procedure */
 #define PAL_STATUS_EINVAL        (-2)    /* Invalid argument */
 #define PAL_STATUS_ERROR        (-3)    /* Error */
 #define PAL_STATUS_CACHE_INIT_FAIL    (-4)    /* Could not initialize the
 * specified level and type of
 * cache without sideeffects
 * and "restrict" was 1
 */
 #define PAL_STATUS_REQUIRES_MEMORY    (-9)    /* Call requires PAL memory buffer */
 
 /* Processor cache level in the hierarchy */
 typedef u64                pal_cache_level_t;
 #define PAL_CACHE_LEVEL_L0        0    /* L0 */
 #define PAL_CACHE_LEVEL_L1        1    /* L1 */
 #define PAL_CACHE_LEVEL_L2        2    /* L2 */
 
 
 /* Processor cache type at a particular level in the hierarchy */
 
 typedef u64                pal_cache_type_t;
 #define PAL_CACHE_TYPE_INSTRUCTION    1    /* Instruction cache */
 #define PAL_CACHE_TYPE_DATA        2    /* Data or unified cache */
 #define PAL_CACHE_TYPE_INSTRUCTION_DATA    3    /* Both Data & Instruction */
 
 
 #define PAL_CACHE_FLUSH_INVALIDATE    1    /* Invalidate clean lines */
 #define PAL_CACHE_FLUSH_CHK_INTRS    2    /* check for interrupts/mc while flushing */
 
 /* Processor cache line size in bytes  */
 typedef int                pal_cache_line_size_t;
 
 /* Processor cache line state */
 typedef u64                pal_cache_line_state_t;
 #define PAL_CACHE_LINE_STATE_INVALID    0    /* Invalid */
 #define PAL_CACHE_LINE_STATE_SHARED    1    /* Shared */
 #define PAL_CACHE_LINE_STATE_EXCLUSIVE    2    /* Exclusive */
 #define PAL_CACHE_LINE_STATE_MODIFIED    3    /* Modified */
 
 typedef struct pal_freq_ratio {
 u32 den, num;        /* numerator & denominator */
 } itc_ratio, proc_ratio;
 
 typedef    union  pal_cache_config_info_1_s {
 struct {
 u64        u        : 1,    /* 0 Unified cache ? */
 at        : 2,    /* 2-1 Cache mem attr*/
 reserved    : 5,    /* 7-3 Reserved */
 associativity    : 8,    /* 16-8 Associativity*/
 line_size    : 8,    /* 23-17 Line size */
 stride        : 8,    /* 31-24 Stride */
 store_latency    : 8,    /*39-32 Store latency*/
 load_latency    : 8,    /* 47-40 Load latency*/
 store_hints    : 8,    /* 55-48 Store hints*/
 load_hints    : 8;    /* 63-56 Load hints */
 } pcci1_bits;
 u64            pcci1_data;
 } pal_cache_config_info_1_t;
 
 typedef    union  pal_cache_config_info_2_s {
 struct {
 u32        cache_size;        /*cache size in bytes*/
 
 
 u32        alias_boundary    : 8,    /* 39-32 aliased addr
 * separation for max
 * performance.
 */
 tag_ls_bit    : 8,    /* 47-40 LSb of addr*/
 tag_ms_bit    : 8,    /* 55-48 MSb of addr*/
 reserved    : 8;    /* 63-56 Reserved */
 } pcci2_bits;
 u64            pcci2_data;
 } pal_cache_config_info_2_t;
 
 
 typedef struct pal_cache_config_info_s {
 pal_status_t            pcci_status;
 pal_cache_config_info_1_t    pcci_info_1;
 pal_cache_config_info_2_t    pcci_info_2;
 u64                pcci_reserved;
 } pal_cache_config_info_t;
 
 #define pcci_ld_hints        pcci_info_1.pcci1_bits.load_hints
 #define pcci_st_hints        pcci_info_1.pcci1_bits.store_hints
 #define pcci_ld_latency        pcci_info_1.pcci1_bits.load_latency
 #define pcci_st_latency        pcci_info_1.pcci1_bits.store_latency
 #define pcci_stride        pcci_info_1.pcci1_bits.stride
 #define pcci_line_size        pcci_info_1.pcci1_bits.line_size
 #define pcci_assoc        pcci_info_1.pcci1_bits.associativity
 #define pcci_cache_attr        pcci_info_1.pcci1_bits.at
 #define pcci_unified        pcci_info_1.pcci1_bits.u
 #define pcci_tag_msb        pcci_info_2.pcci2_bits.tag_ms_bit
 #define pcci_tag_lsb        pcci_info_2.pcci2_bits.tag_ls_bit
 #define pcci_alias_boundary    pcci_info_2.pcci2_bits.alias_boundary
 #define pcci_cache_size        pcci_info_2.pcci2_bits.cache_size
 
 
 
 /* Possible values for cache attributes */
 
 #define PAL_CACHE_ATTR_WT        0    /* Write through cache */
 #define PAL_CACHE_ATTR_WB        1    /* Write back cache */
 #define PAL_CACHE_ATTR_WT_OR_WB        2    /* Either write thru or write
 * back depending on TLB
 * memory attributes
 */
 
 
 /* Possible values for cache hints */
 
 #define PAL_CACHE_HINT_TEMP_1        0    /* Temporal level 1 */
 #define PAL_CACHE_HINT_NTEMP_1        1    /* Non-temporal level 1 */
 #define PAL_CACHE_HINT_NTEMP_ALL    3    /* Non-temporal all levels */
 
 /* Processor cache protection  information */
 typedef union pal_cache_protection_element_u {
 u32            pcpi_data;
 struct {
 u32        data_bits    : 8, /* # data bits covered by
 * each unit of protection
 */
 
 tagprot_lsb    : 6, /* Least -do- */
 tagprot_msb    : 6, /* Most Sig. tag address
 * bit that this
 * protection covers.
 */
 prot_bits    : 6, /* # of protection bits */
 method        : 4, /* Protection method */
 t_d        : 2; /* Indicates which part
 * of the cache this
 * protection encoding
 * applies.
 */
 } pcp_info;
 } pal_cache_protection_element_t;
 
 #define pcpi_cache_prot_part    pcp_info.t_d
 #define pcpi_prot_method    pcp_info.method
 #define pcpi_prot_bits        pcp_info.prot_bits
 #define pcpi_tagprot_msb    pcp_info.tagprot_msb
 #define pcpi_tagprot_lsb    pcp_info.tagprot_lsb
 #define pcpi_data_bits        pcp_info.data_bits
 
 /* Processor cache part encodings */
 #define PAL_CACHE_PROT_PART_DATA    0    /* Data protection  */
 #define PAL_CACHE_PROT_PART_TAG        1    /* Tag  protection */
 #define PAL_CACHE_PROT_PART_TAG_DATA    2    /* Tag+data protection (tag is
 * more significant )
 */
 #define PAL_CACHE_PROT_PART_DATA_TAG    3    /* Data+tag protection (data is
 * more significant )
 */
 #define PAL_CACHE_PROT_PART_MAX        6
 
 
 typedef struct pal_cache_protection_info_s {
 pal_status_t            pcpi_status;
 pal_cache_protection_element_t    pcp_info[PAL_CACHE_PROT_PART_MAX];
 } pal_cache_protection_info_t;
 
 
 /* Processor cache protection method encodings */
 #define PAL_CACHE_PROT_METHOD_NONE        0    /* No protection */
 #define PAL_CACHE_PROT_METHOD_ODD_PARITY    1    /* Odd parity */
 #define PAL_CACHE_PROT_METHOD_EVEN_PARITY    2    /* Even parity */
 #define PAL_CACHE_PROT_METHOD_ECC        3    /* ECC protection */
 
 
 /* Processor cache line identification in the hierarchy */
 typedef union pal_cache_line_id_u {
 u64            pclid_data;
 struct {
 u64        cache_type    : 8,    /* 7-0 cache type */
 level        : 8,    /* 15-8 level of the
 * cache in the
 * hierarchy.
 */
 way        : 8,    /* 23-16 way in the set
 */
 part        : 8,    /* 31-24 part of the
 * cache
 */
 reserved    : 32;    /* 63-32 is reserved*/
 } pclid_info_read;
 struct {
 u64        cache_type    : 8,    /* 7-0 cache type */
 level        : 8,    /* 15-8 level of the
 * cache in the
 * hierarchy.
 */
 way        : 8,    /* 23-16 way in the set
 */
 part        : 8,    /* 31-24 part of the
 * cache
 */
 mesi        : 8,    /* 39-32 cache line
 * state
 */
 start        : 8,    /* 47-40 lsb of data to
 * invert
 */
 length        : 8,    /* 55-48 #bits to
 * invert
 */
 trigger        : 8;    /* 63-56 Trigger error
 * by doing a load
 * after the write
 */
 
 } pclid_info_write;
 } pal_cache_line_id_u_t;
 
 #define pclid_read_part        pclid_info_read.part
 #define pclid_read_way        pclid_info_read.way
 #define pclid_read_level    pclid_info_read.level
 #define pclid_read_cache_type    pclid_info_read.cache_type
 
 #define pclid_write_trigger    pclid_info_write.trigger
 #define pclid_write_length    pclid_info_write.length
 #define pclid_write_start    pclid_info_write.start
 #define pclid_write_mesi    pclid_info_write.mesi
 #define pclid_write_part    pclid_info_write.part
 #define pclid_write_way        pclid_info_write.way
 #define pclid_write_level    pclid_info_write.level
 #define pclid_write_cache_type    pclid_info_write.cache_type
 
 /* Processor cache line part encodings */
 #define PAL_CACHE_LINE_ID_PART_DATA        0    /* Data */
 #define PAL_CACHE_LINE_ID_PART_TAG        1    /* Tag */
 #define PAL_CACHE_LINE_ID_PART_DATA_PROT    2    /* Data protection */
 #define PAL_CACHE_LINE_ID_PART_TAG_PROT        3    /* Tag protection */
 #define PAL_CACHE_LINE_ID_PART_DATA_TAG_PROT    4    /* Data+tag
 * protection
 */
 typedef struct pal_cache_line_info_s {
 pal_status_t        pcli_status;        /* Return status of the read cache line
 * info call.
 */
 u64            pcli_data;        /* 64-bit data, tag, protection bits .. */
 u64            pcli_data_len;        /* data length in bits */
 pal_cache_line_state_t    pcli_cache_line_state;    /* mesi state */
 
 } pal_cache_line_info_t;
 
 
 /* Machine Check related crap */
 
 /* Pending event status bits  */
 typedef u64                    pal_mc_pending_events_t;
 
 #define PAL_MC_PENDING_MCA            (1 << 0)
 #define PAL_MC_PENDING_INIT            (1 << 1)
 
 /* Error information type */
 typedef u64                    pal_mc_info_index_t;
 
 #define PAL_MC_INFO_PROCESSOR            0    /* Processor */
 #define PAL_MC_INFO_CACHE_CHECK            1    /* Cache check */
 #define PAL_MC_INFO_TLB_CHECK            2    /* Tlb check */
 #define PAL_MC_INFO_BUS_CHECK            3    /* Bus check */
 #define PAL_MC_INFO_REQ_ADDR            4    /* Requestor address */
 #define PAL_MC_INFO_RESP_ADDR            5    /* Responder address */
 #define PAL_MC_INFO_TARGET_ADDR            6    /* Target address */
 #define PAL_MC_INFO_IMPL_DEP            7    /* Implementation
 * dependent
 */
 
 #define PAL_TLB_CHECK_OP_PURGE            8
 
 typedef struct pal_process_state_info_s {
 u64        reserved1    : 2,
 rz        : 1,    /* PAL_CHECK processor
 * rendezvous
 * successful.
 */
 
 ra        : 1,    /* PAL_CHECK attempted
 * a rendezvous.
 */
 me        : 1,    /* Distinct multiple
 * errors occurred
 */
 
 mn        : 1,    /* Min. state save
 * area has been
 * registered with PAL
 */
 
 sy        : 1,    /* Storage integrity
 * synched
 */
 
 
 co        : 1,    /* Continuable */
 ci        : 1,    /* MC isolated */
 us        : 1,    /* Uncontained storage
 * damage.
 */
 
 
 hd        : 1,    /* Non-essential hw
 * lost (no loss of
 * functionality)
 * causing the
 * processor to run in
 * degraded mode.
 */
 
 tl        : 1,    /* 1 => MC occurred
 * after an instr was
 * executed but before
 * the trap that
 * resulted from instr
 * execution was
 * generated.
 * (Trap Lost )
 */
 mi        : 1,    /* More information available
 * call PAL_MC_ERROR_INFO
 */
 pi        : 1,    /* Precise instruction pointer */
 pm        : 1,    /* Precise min-state save area */
 
 dy        : 1,    /* Processor dynamic
 * state valid
 */
 
 
 in        : 1,    /* 0 = MC, 1 = INIT */
 rs        : 1,    /* RSE valid */
 cm        : 1,    /* MC corrected */
 ex        : 1,    /* MC is expected */
 cr        : 1,    /* Control regs valid*/
 pc        : 1,    /* Perf cntrs valid */
 dr        : 1,    /* Debug regs valid */
 tr        : 1,    /* Translation regs
 * valid
 */
 rr        : 1,    /* Region regs valid */
 ar        : 1,    /* App regs valid */
 br        : 1,    /* Branch regs valid */
 pr        : 1,    /* Predicate registers
 * valid
 */
 
 fp        : 1,    /* fp registers valid*/
 b1        : 1,    /* Preserved bank one
 * general registers
 * are valid
 */
 b0        : 1,    /* Preserved bank zero
 * general registers
 * are valid
 */
 gr        : 1,    /* General registers
 * are valid
 * (excl. banked regs)
 */
 dsize        : 16,    /* size of dynamic
 * state returned
 * by the processor
 */
 
 se        : 1,    /* Shared error.  MCA in a
 shared structure */
 reserved2    : 10,
 cc        : 1,    /* Cache check */
 tc        : 1,    /* TLB check */
 bc        : 1,    /* Bus check */
 rc        : 1,    /* Register file check */
 uc        : 1;    /* Uarch check */
 
 } pal_processor_state_info_t;
 
 typedef struct pal_cache_check_info_s {
 u64        op        : 4,    /* Type of cache
 * operation that
 * caused the machine
 * check.
 */
 level        : 2,    /* Cache level */
 reserved1    : 2,
 dl        : 1,    /* Failure in data part
 * of cache line
 */
 tl        : 1,    /* Failure in tag part
 * of cache line
 */
 dc        : 1,    /* Failure in dcache */
 ic        : 1,    /* Failure in icache */
 mesi        : 3,    /* Cache line state */
 mv        : 1,    /* mesi valid */
 way        : 5,    /* Way in which the
 * error occurred
 */
 wiv        : 1,    /* Way field valid */
 reserved2    : 1,
 dp        : 1,    /* Data poisoned on MBE */
 reserved3    : 6,
 hlth        : 2,    /* Health indicator */
 
 index        : 20,    /* Cache line index */
 reserved4    : 2,
 
 is        : 1,    /* instruction set (1 == ia32) */
 iv        : 1,    /* instruction set field valid */
 pl        : 2,    /* privilege level */
 pv        : 1,    /* privilege level field valid */
 mcc        : 1,    /* Machine check corrected */
 tv        : 1,    /* Target address
 * structure is valid
 */
 rq        : 1,    /* Requester identifier
 * structure is valid
 */
 rp        : 1,    /* Responder identifier
 * structure is valid
 */
 pi        : 1;    /* Precise instruction pointer
 * structure is valid
 */
 } pal_cache_check_info_t;
 
 typedef struct pal_tlb_check_info_s {
 
 u64        tr_slot        : 8,    /* Slot# of TR where
 * error occurred
 */
 trv        : 1,    /* tr_slot field is valid */
 reserved1    : 1,
 level        : 2,    /* TLB level where failure occurred */
 reserved2    : 4,
 dtr        : 1,    /* Fail in data TR */
 itr        : 1,    /* Fail in inst TR */
 dtc        : 1,    /* Fail in data TC */
 itc        : 1,    /* Fail in inst. TC */
 op        : 4,    /* Cache operation */
 reserved3    : 6,
 hlth        : 2,    /* Health indicator */
 reserved4    : 22,
 
 is        : 1,    /* instruction set (1 == ia32) */
 iv        : 1,    /* instruction set field valid */
 pl        : 2,    /* privilege level */
 pv        : 1,    /* privilege level field valid */
 mcc        : 1,    /* Machine check corrected */
 tv        : 1,    /* Target address
 * structure is valid
 */
 rq        : 1,    /* Requester identifier
 * structure is valid
 */
 rp        : 1,    /* Responder identifier
 * structure is valid
 */
 pi        : 1;    /* Precise instruction pointer
 * structure is valid
 */
 } pal_tlb_check_info_t;
 
 typedef struct pal_bus_check_info_s {
 u64        size        : 5,    /* Xaction size */
 ib        : 1,    /* Internal bus error */
 eb        : 1,    /* External bus error */
 cc        : 1,    /* Error occurred
 * during cache-cache
 * transfer.
 */
 type        : 8,    /* Bus xaction type*/
 sev        : 5,    /* Bus error severity*/
 hier        : 2,    /* Bus hierarchy level */
 dp        : 1,    /* Data poisoned on MBE */
 bsi        : 8,    /* Bus error status
 * info
 */
 reserved2    : 22,
 
 is        : 1,    /* instruction set (1 == ia32) */
 iv        : 1,    /* instruction set field valid */
 pl        : 2,    /* privilege level */
 pv        : 1,    /* privilege level field valid */
 mcc        : 1,    /* Machine check corrected */
 tv        : 1,    /* Target address
 * structure is valid
 */
 rq        : 1,    /* Requester identifier
 * structure is valid
 */
 rp        : 1,    /* Responder identifier
 * structure is valid
 */
 pi        : 1;    /* Precise instruction pointer
 * structure is valid
 */
 } pal_bus_check_info_t;
 
 typedef struct pal_reg_file_check_info_s {
 u64        id        : 4,    /* Register file identifier */
 op        : 4,    /* Type of register
 * operation that
 * caused the machine
 * check.
 */
 reg_num        : 7,    /* Register number */
 rnv        : 1,    /* reg_num valid */
 reserved2    : 38,
 
 is        : 1,    /* instruction set (1 == ia32) */
 iv        : 1,    /* instruction set field valid */
 pl        : 2,    /* privilege level */
 pv        : 1,    /* privilege level field valid */
 mcc        : 1,    /* Machine check corrected */
 reserved3    : 3,
 pi        : 1;    /* Precise instruction pointer
 * structure is valid
 */
 } pal_reg_file_check_info_t;
 
 typedef struct pal_uarch_check_info_s {
 u64        sid        : 5,    /* Structure identification */
 level        : 3,    /* Level of failure */
 array_id    : 4,    /* Array identification */
 op        : 4,    /* Type of
 * operation that
 * caused the machine
 * check.
 */
 way        : 6,    /* Way of structure */
 wv        : 1,    /* way valid */
 xv        : 1,    /* index valid */
 reserved1    : 6,
 hlth        : 2,    /* Health indicator */
 index        : 8,    /* Index or set of the uarch
 * structure that failed.
 */
 reserved2    : 24,
 
 is        : 1,    /* instruction set (1 == ia32) */
 iv        : 1,    /* instruction set field valid */
 pl        : 2,    /* privilege level */
 pv        : 1,    /* privilege level field valid */
 mcc        : 1,    /* Machine check corrected */
 tv        : 1,    /* Target address
 * structure is valid
 */
 rq        : 1,    /* Requester identifier
 * structure is valid
 */
 rp        : 1,    /* Responder identifier
 * structure is valid
 */
 pi        : 1;    /* Precise instruction pointer
 * structure is valid
 */
 } pal_uarch_check_info_t;
 
 typedef union pal_mc_error_info_u {
 u64                pmei_data;
 pal_processor_state_info_t    pme_processor;
 pal_cache_check_info_t        pme_cache;
 pal_tlb_check_info_t        pme_tlb;
 pal_bus_check_info_t        pme_bus;
 pal_reg_file_check_info_t    pme_reg_file;
 pal_uarch_check_info_t        pme_uarch;
 } pal_mc_error_info_t;
 
 #define pmci_proc_unknown_check            pme_processor.uc
 #define pmci_proc_bus_check            pme_processor.bc
 #define pmci_proc_tlb_check            pme_processor.tc
 #define pmci_proc_cache_check            pme_processor.cc
 #define pmci_proc_dynamic_state_size        pme_processor.dsize
 #define pmci_proc_gpr_valid            pme_processor.gr
 #define pmci_proc_preserved_bank0_gpr_valid    pme_processor.b0
 #define pmci_proc_preserved_bank1_gpr_valid    pme_processor.b1
 #define pmci_proc_fp_valid            pme_processor.fp
 #define pmci_proc_predicate_regs_valid        pme_processor.pr
 #define pmci_proc_branch_regs_valid        pme_processor.br
 #define pmci_proc_app_regs_valid        pme_processor.ar
 #define pmci_proc_region_regs_valid        pme_processor.rr
 #define pmci_proc_translation_regs_valid    pme_processor.tr
 #define pmci_proc_debug_regs_valid        pme_processor.dr
 #define pmci_proc_perf_counters_valid        pme_processor.pc
 #define pmci_proc_control_regs_valid        pme_processor.cr
 #define pmci_proc_machine_check_expected    pme_processor.ex
 #define pmci_proc_machine_check_corrected    pme_processor.cm
 #define pmci_proc_rse_valid            pme_processor.rs
 #define pmci_proc_machine_check_or_init        pme_processor.in
 #define pmci_proc_dynamic_state_valid        pme_processor.dy
 #define pmci_proc_operation            pme_processor.op
 #define pmci_proc_trap_lost            pme_processor.tl
 #define pmci_proc_hardware_damage        pme_processor.hd
 #define pmci_proc_uncontained_storage_damage    pme_processor.us
 #define pmci_proc_machine_check_isolated    pme_processor.ci
 #define pmci_proc_continuable            pme_processor.co
 #define pmci_proc_storage_intergrity_synced    pme_processor.sy
 #define pmci_proc_min_state_save_area_regd    pme_processor.mn
 #define    pmci_proc_distinct_multiple_errors    pme_processor.me
 #define pmci_proc_pal_attempted_rendezvous    pme_processor.ra
 #define pmci_proc_pal_rendezvous_complete    pme_processor.rz
 
 
 #define pmci_cache_level            pme_cache.level
 #define pmci_cache_line_state            pme_cache.mesi
 #define pmci_cache_line_state_valid        pme_cache.mv
 #define pmci_cache_line_index            pme_cache.index
 #define pmci_cache_instr_cache_fail        pme_cache.ic
 #define pmci_cache_data_cache_fail        pme_cache.dc
 #define pmci_cache_line_tag_fail        pme_cache.tl
 #define pmci_cache_line_data_fail        pme_cache.dl
 #define pmci_cache_operation            pme_cache.op
 #define pmci_cache_way_valid            pme_cache.wv
 #define pmci_cache_target_address_valid        pme_cache.tv
 #define pmci_cache_way                pme_cache.way
 #define pmci_cache_mc                pme_cache.mc
 
 #define pmci_tlb_instr_translation_cache_fail    pme_tlb.itc
 #define pmci_tlb_data_translation_cache_fail    pme_tlb.dtc
 #define pmci_tlb_instr_translation_reg_fail    pme_tlb.itr
 #define pmci_tlb_data_translation_reg_fail    pme_tlb.dtr
 #define pmci_tlb_translation_reg_slot        pme_tlb.tr_slot
 #define pmci_tlb_mc                pme_tlb.mc
 
 #define pmci_bus_status_info            pme_bus.bsi
 #define pmci_bus_req_address_valid        pme_bus.rq
 #define pmci_bus_resp_address_valid        pme_bus.rp
 #define pmci_bus_target_address_valid        pme_bus.tv
 #define pmci_bus_error_severity            pme_bus.sev
 #define pmci_bus_transaction_type        pme_bus.type
 #define pmci_bus_cache_cache_transfer        pme_bus.cc
 #define pmci_bus_transaction_size        pme_bus.size
 #define pmci_bus_internal_error            pme_bus.ib
 #define pmci_bus_external_error            pme_bus.eb
 #define pmci_bus_mc                pme_bus.mc
 
 /*
 * NOTE: this min_state_save area struct only includes the 1KB
 * architectural state save area.  The other 3 KB is scratch space
 * for PAL.
 */
 
 typedef struct pal_min_state_area_s {
 u64    pmsa_nat_bits;        /* nat bits for saved GRs  */
 u64    pmsa_gr[15];        /* GR1    - GR15           */
 u64    pmsa_bank0_gr[16];    /* GR16 - GR31           */
 u64    pmsa_bank1_gr[16];    /* GR16 - GR31           */
 u64    pmsa_pr;        /* predicate registers       */
 u64    pmsa_br0;        /* branch register 0       */
 u64    pmsa_rsc;        /* ar.rsc           */
 u64    pmsa_iip;        /* cr.iip           */
 u64    pmsa_ipsr;        /* cr.ipsr           */
 u64    pmsa_ifs;        /* cr.ifs           */
 u64    pmsa_xip;        /* previous iip           */
 u64    pmsa_xpsr;        /* previous psr           */
 u64    pmsa_xfs;        /* previous ifs           */
 u64    pmsa_br1;        /* branch register 1       */
 u64    pmsa_reserved[70];    /* pal_min_state_area should total to 1KB */
 } pal_min_state_area_t;
 
 
 struct ia64_pal_retval {
 /*
 * A zero status value indicates call completed without error.
 * A negative status value indicates reason of call failure.
 * A positive status value indicates success but an
 * informational value should be printed (e.g., "reboot for
 * change to take effect").
 */
 s64 status;
 u64 v0;
 u64 v1;
 u64 v2;
 };
 
 /*
 * Note: Currently unused PAL arguments are generally labeled
 * "reserved" so the value specified in the PAL documentation
 * (generally 0) MUST be passed.  Reserved parameters are not optional
 * parameters.
 */
 extern struct ia64_pal_retval ia64_pal_call_static (u64, u64, u64, u64);
 extern struct ia64_pal_retval ia64_pal_call_stacked (u64, u64, u64, u64);
 extern struct ia64_pal_retval ia64_pal_call_phys_static (u64, u64, u64, u64);
 extern struct ia64_pal_retval ia64_pal_call_phys_stacked (u64, u64, u64, u64);
 extern void ia64_save_scratch_fpregs (struct ia64_fpreg *);
 extern void ia64_load_scratch_fpregs (struct ia64_fpreg *);
 
 #define PAL_CALL(iprv,a0,a1,a2,a3) do {            \
 struct ia64_fpreg fr[6];            \
 ia64_save_scratch_fpregs(fr);            \
 iprv = ia64_pal_call_static(a0, a1, a2, a3);    \
 ia64_load_scratch_fpregs(fr);            \
 } while (0)
 
 #define PAL_CALL_STK(iprv,a0,a1,a2,a3) do {        \
 struct ia64_fpreg fr[6];            \
 ia64_save_scratch_fpregs(fr);            \
 iprv = ia64_pal_call_stacked(a0, a1, a2, a3);    \
 ia64_load_scratch_fpregs(fr);            \
 } while (0)
 
 #define PAL_CALL_PHYS(iprv,a0,a1,a2,a3) do {            \
 struct ia64_fpreg fr[6];                \
 ia64_save_scratch_fpregs(fr);                \
 iprv = ia64_pal_call_phys_static(a0, a1, a2, a3);    \
 ia64_load_scratch_fpregs(fr);                \
 } while (0)
 
 #define PAL_CALL_PHYS_STK(iprv,a0,a1,a2,a3) do {        \
 struct ia64_fpreg fr[6];                \
 ia64_save_scratch_fpregs(fr);                \
 iprv = ia64_pal_call_phys_stacked(a0, a1, a2, a3);    \
 ia64_load_scratch_fpregs(fr);                \
 } while (0)
 
 typedef int (*ia64_pal_handler) (u64, ...);
 extern ia64_pal_handler ia64_pal;
 extern void ia64_pal_handler_init (void *);
 
 extern ia64_pal_handler ia64_pal;
 
 extern pal_cache_config_info_t        l0d_cache_config_info;
 extern pal_cache_config_info_t        l0i_cache_config_info;
 extern pal_cache_config_info_t        l1_cache_config_info;
 extern pal_cache_config_info_t        l2_cache_config_info;
 
 extern pal_cache_protection_info_t    l0d_cache_protection_info;
 extern pal_cache_protection_info_t    l0i_cache_protection_info;
 extern pal_cache_protection_info_t    l1_cache_protection_info;
 extern pal_cache_protection_info_t    l2_cache_protection_info;
 
 extern pal_cache_config_info_t        pal_cache_config_info_get(pal_cache_level_t,
 pal_cache_type_t);
 
 extern pal_cache_protection_info_t    pal_cache_protection_info_get(pal_cache_level_t,
 pal_cache_type_t);
 
 
 extern void                pal_error(int);
 
 
 /* Useful wrappers for the current list of pal procedures */
 
 typedef union pal_bus_features_u {
 u64    pal_bus_features_val;
 struct {
 u64    pbf_reserved1                :    29;
 u64    pbf_req_bus_parking            :    1;
 u64    pbf_bus_lock_mask            :    1;
 u64    pbf_enable_half_xfer_rate        :    1;
 u64    pbf_reserved2                :    20;
 u64    pbf_enable_shared_line_replace        :    1;
 u64    pbf_enable_exclusive_line_replace    :    1;
 u64    pbf_disable_xaction_queueing        :    1;
 u64    pbf_disable_resp_err_check        :    1;
 u64    pbf_disable_berr_check            :    1;
 u64    pbf_disable_bus_req_internal_err_signal    :    1;
 u64    pbf_disable_bus_req_berr_signal        :    1;
 u64    pbf_disable_bus_init_event_check    :    1;
 u64    pbf_disable_bus_init_event_signal    :    1;
 u64    pbf_disable_bus_addr_err_check        :    1;
 u64    pbf_disable_bus_addr_err_signal        :    1;
 u64    pbf_disable_bus_data_err_check        :    1;
 } pal_bus_features_s;
 } pal_bus_features_u_t;
 
 extern void pal_bus_features_print (u64);
 
 /* Provide information about configurable processor bus features */
 static inline s64
 ia64_pal_bus_get_features (pal_bus_features_u_t *features_avail,
 pal_bus_features_u_t *features_status,
 pal_bus_features_u_t *features_control)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS(iprv, PAL_BUS_GET_FEATURES, 0, 0, 0);
 if (features_avail)
 features_avail->pal_bus_features_val = iprv.v0;
 if (features_status)
 features_status->pal_bus_features_val = iprv.v1;
 if (features_control)
 features_control->pal_bus_features_val = iprv.v2;
 return iprv.status;
 }
 
 /* Enables/disables specific processor bus features */
 static inline s64
 ia64_pal_bus_set_features (pal_bus_features_u_t feature_select)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS(iprv, PAL_BUS_SET_FEATURES, feature_select.pal_bus_features_val, 0, 0);
 return iprv.status;
 }
 
 /* Get detailed cache information */
 static inline s64
 ia64_pal_cache_config_info (u64 cache_level, u64 cache_type, pal_cache_config_info_t *conf)
 {
 struct ia64_pal_retval iprv;
 
 PAL_CALL(iprv, PAL_CACHE_INFO, cache_level, cache_type, 0);
 
 if (iprv.status == 0) {
 conf->pcci_status                 = iprv.status;
 conf->pcci_info_1.pcci1_data      = iprv.v0;
 conf->pcci_info_2.pcci2_data      = iprv.v1;
 conf->pcci_reserved               = iprv.v2;
 }
 return iprv.status;
 
 }
 
 /* Get detailed cche protection information */
 static inline s64
 ia64_pal_cache_prot_info (u64 cache_level, u64 cache_type, pal_cache_protection_info_t *prot)
 {
 struct ia64_pal_retval iprv;
 
 PAL_CALL(iprv, PAL_CACHE_PROT_INFO, cache_level, cache_type, 0);
 
 if (iprv.status == 0) {
 prot->pcpi_status           = iprv.status;
 prot->pcp_info[0].pcpi_data = iprv.v0 & 0xffffffff;
 prot->pcp_info[1].pcpi_data = iprv.v0 >> 32;
 prot->pcp_info[2].pcpi_data = iprv.v1 & 0xffffffff;
 prot->pcp_info[3].pcpi_data = iprv.v1 >> 32;
 prot->pcp_info[4].pcpi_data = iprv.v2 & 0xffffffff;
 prot->pcp_info[5].pcpi_data = iprv.v2 >> 32;
 }
 return iprv.status;
 }
 
 /*
 * Flush the processor instruction or data caches.  *PROGRESS must be
 * initialized to zero before calling this for the first time..
 */
 static inline s64
 ia64_pal_cache_flush (u64 cache_type, u64 invalidate, u64 *progress, u64 *vector)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_CACHE_FLUSH, cache_type, invalidate, *progress);
 if (vector)
 *vector = iprv.v0;
 *progress = iprv.v1;
 return iprv.status;
 }
 
 
 /* Initialize the processor controlled caches */
 static inline s64
 ia64_pal_cache_init (u64 level, u64 cache_type, u64 rest)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_CACHE_INIT, level, cache_type, rest);
 return iprv.status;
 }
 
 /* Initialize the tags and data of a data or unified cache line of
 * processor controlled cache to known values without the availability
 * of backing memory.
 */
 static inline s64
 ia64_pal_cache_line_init (u64 physical_addr, u64 data_value)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_CACHE_LINE_INIT, physical_addr, data_value, 0);
 return iprv.status;
 }
 
 
 /* Read the data and tag of a processor controlled cache line for diags */
 static inline s64
 ia64_pal_cache_read (pal_cache_line_id_u_t line_id, u64 physical_addr)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS_STK(iprv, PAL_CACHE_READ, line_id.pclid_data,
 physical_addr, 0);
 return iprv.status;
 }
 
 /* Return summary information about the hierarchy of caches controlled by the processor */
 static inline long ia64_pal_cache_summary(unsigned long *cache_levels,
 unsigned long *unique_caches)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_CACHE_SUMMARY, 0, 0, 0);
 if (cache_levels)
 *cache_levels = iprv.v0;
 if (unique_caches)
 *unique_caches = iprv.v1;
 return iprv.status;
 }
 
 /* Write the data and tag of a processor-controlled cache line for diags */
 static inline s64
 ia64_pal_cache_write (pal_cache_line_id_u_t line_id, u64 physical_addr, u64 data)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS_STK(iprv, PAL_CACHE_WRITE, line_id.pclid_data,
 physical_addr, data);
 return iprv.status;
 }
 
 
 /* Return the parameters needed to copy relocatable PAL procedures from ROM to memory */
 static inline s64
 ia64_pal_copy_info (u64 copy_type, u64 num_procs, u64 num_iopics,
 u64 *buffer_size, u64 *buffer_align)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_COPY_INFO, copy_type, num_procs, num_iopics);
 if (buffer_size)
 *buffer_size = iprv.v0;
 if (buffer_align)
 *buffer_align = iprv.v1;
 return iprv.status;
 }
 
 /* Copy relocatable PAL procedures from ROM to memory */
 static inline s64
 ia64_pal_copy_pal (u64 target_addr, u64 alloc_size, u64 processor, u64 *pal_proc_offset)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_COPY_PAL, target_addr, alloc_size, processor);
 if (pal_proc_offset)
 *pal_proc_offset = iprv.v0;
 return iprv.status;
 }
 
 /* Return the number of instruction and data debug register pairs */
 static inline long ia64_pal_debug_info(unsigned long *inst_regs,
 unsigned long *data_regs)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_DEBUG_INFO, 0, 0, 0);
 if (inst_regs)
 *inst_regs = iprv.v0;
 if (data_regs)
 *data_regs = iprv.v1;
 
 return iprv.status;
 }
 
 #ifdef TBD
 /* Switch from IA64-system environment to IA-32 system environment */
 static inline s64
 ia64_pal_enter_ia32_env (ia32_env1, ia32_env2, ia32_env3)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_ENTER_IA_32_ENV, ia32_env1, ia32_env2, ia32_env3);
 return iprv.status;
 }
 #endif
 
 /* Get unique geographical address of this processor on its bus */
 static inline s64
 ia64_pal_fixed_addr (u64 *global_unique_addr)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_FIXED_ADDR, 0, 0, 0);
 if (global_unique_addr)
 *global_unique_addr = iprv.v0;
 return iprv.status;
 }
 
 /* Get base frequency of the platform if generated by the processor */
 static inline long ia64_pal_freq_base(unsigned long *platform_base_freq)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_FREQ_BASE, 0, 0, 0);
 if (platform_base_freq)
 *platform_base_freq = iprv.v0;
 return iprv.status;
 }
 
 /*
 * Get the ratios for processor frequency, bus frequency and interval timer to
 * to base frequency of the platform
 */
 static inline s64
 ia64_pal_freq_ratios (struct pal_freq_ratio *proc_ratio, struct pal_freq_ratio *bus_ratio,
 struct pal_freq_ratio *itc_ratio)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_FREQ_RATIOS, 0, 0, 0);
 if (proc_ratio)
 *(u64 *)proc_ratio = iprv.v0;
 if (bus_ratio)
 *(u64 *)bus_ratio = iprv.v1;
 if (itc_ratio)
 *(u64 *)itc_ratio = iprv.v2;
 return iprv.status;
 }
 
 /*
 * Get the current hardware resource sharing policy of the processor
 */
 static inline s64
 ia64_pal_get_hw_policy (u64 proc_num, u64 *cur_policy, u64 *num_impacted,
 u64 *la)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_GET_HW_POLICY, proc_num, 0, 0);
 if (cur_policy)
 *cur_policy = iprv.v0;
 if (num_impacted)
 *num_impacted = iprv.v1;
 if (la)
 *la = iprv.v2;
 return iprv.status;
 }
 
 /* Make the processor enter HALT or one of the implementation dependent low
 * power states where prefetching and execution are suspended and cache and
 * TLB coherency is not maintained.
 */
 static inline s64
 ia64_pal_halt (u64 halt_state)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_HALT, halt_state, 0, 0);
 return iprv.status;
 }
 
 typedef union pal_power_mgmt_info_u {
 u64            ppmi_data;
 struct {
 u64        exit_latency        : 16,
 entry_latency        : 16,
 power_consumption    : 28,
 im            : 1,
 co            : 1,
 reserved        : 2;
 } pal_power_mgmt_info_s;
 } pal_power_mgmt_info_u_t;
 
 /* Return information about processor's optional power management capabilities. */
 static inline s64
 ia64_pal_halt_info (pal_power_mgmt_info_u_t *power_buf)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_STK(iprv, PAL_HALT_INFO, (unsigned long) power_buf, 0, 0);
 return iprv.status;
 }
 
 /* Get the current P-state information */
 static inline s64
 ia64_pal_get_pstate (u64 *pstate_index, unsigned long type)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_STK(iprv, PAL_GET_PSTATE, type, 0, 0);
 *pstate_index = iprv.v0;
 return iprv.status;
 }
 
 /* Set the P-state */
 static inline s64
 ia64_pal_set_pstate (u64 pstate_index)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_STK(iprv, PAL_SET_PSTATE, pstate_index, 0, 0);
 return iprv.status;
 }
 
 /* Processor branding information*/
 static inline s64
 ia64_pal_get_brand_info (char *brand_info)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_STK(iprv, PAL_BRAND_INFO, 0, (u64)brand_info, 0);
 return iprv.status;
 }
 
 /* Cause the processor to enter LIGHT HALT state, where prefetching and execution are
 * suspended, but cache and TLB coherency is maintained.
 */
 static inline s64
 ia64_pal_halt_light (void)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_HALT_LIGHT, 0, 0, 0);
 return iprv.status;
 }
 
 /* Clear all the processor error logging   registers and reset the indicator that allows
 * the error logging registers to be written. This procedure also checks the pending
 * machine check bit and pending INIT bit and reports their states.
 */
 static inline s64
 ia64_pal_mc_clear_log (u64 *pending_vector)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_CLEAR_LOG, 0, 0, 0);
 if (pending_vector)
 *pending_vector = iprv.v0;
 return iprv.status;
 }
 
 /* Ensure that all outstanding transactions in a processor are completed or that any
 * MCA due to thes outstanding transaction is taken.
 */
 static inline s64
 ia64_pal_mc_drain (void)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_DRAIN, 0, 0, 0);
 return iprv.status;
 }
 
 /* Return the machine check dynamic processor state */
 static inline s64
 ia64_pal_mc_dynamic_state (u64 info_type, u64 dy_buffer, u64 *size)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_DYNAMIC_STATE, info_type, dy_buffer, 0);
 if (size)
 *size = iprv.v0;
 return iprv.status;
 }
 
 /* Return processor machine check information */
 static inline s64
 ia64_pal_mc_error_info (u64 info_index, u64 type_index, u64 *size, u64 *error_info)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_ERROR_INFO, info_index, type_index, 0);
 if (size)
 *size = iprv.v0;
 if (error_info)
 *error_info = iprv.v1;
 return iprv.status;
 }
 
 /* Injects the requested processor error or returns info on
 * supported injection capabilities for current processor implementation
 */
 static inline s64
 ia64_pal_mc_error_inject_phys (u64 err_type_info, u64 err_struct_info,
 u64 err_data_buffer, u64 *capabilities, u64 *resources)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS_STK(iprv, PAL_MC_ERROR_INJECT, err_type_info,
 err_struct_info, err_data_buffer);
 if (capabilities)
 *capabilities= iprv.v0;
 if (resources)
 *resources= iprv.v1;
 return iprv.status;
 }
 
 static inline s64
 ia64_pal_mc_error_inject_virt (u64 err_type_info, u64 err_struct_info,
 u64 err_data_buffer, u64 *capabilities, u64 *resources)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_STK(iprv, PAL_MC_ERROR_INJECT, err_type_info,
 err_struct_info, err_data_buffer);
 if (capabilities)
 *capabilities= iprv.v0;
 if (resources)
 *resources= iprv.v1;
 return iprv.status;
 }
 
 /* Inform PALE_CHECK whether a machine check is expected so that PALE_CHECK willnot
 * attempt to correct any expected machine checks.
 */
 static inline s64
 ia64_pal_mc_expected (u64 expected, u64 *previous)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_EXPECTED, expected, 0, 0);
 if (previous)
 *previous = iprv.v0;
 return iprv.status;
 }
 
 typedef union pal_hw_tracking_u {
 u64            pht_data;
 struct {
 u64        itc    :4,    /* Instruction cache tracking */
 dct    :4,    /* Date cache tracking */
 itt    :4,    /* Instruction TLB tracking */
 ddt    :4,    /* Data TLB tracking */
 reserved:48;
 } pal_hw_tracking_s;
 } pal_hw_tracking_u_t;
 
 /*
 * Hardware tracking status.
 */
 static inline s64
 ia64_pal_mc_hw_tracking (u64 *status)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_HW_TRACKING, 0, 0, 0);
 if (status)
 *status = iprv.v0;
 return iprv.status;
 }
 
 /* Register a platform dependent location with PAL to which it can save
 * minimal processor state in the event of a machine check or initialization
 * event.
 */
 static inline s64
 ia64_pal_mc_register_mem (u64 physical_addr, u64 size, u64 *req_size)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_REGISTER_MEM, physical_addr, size, 0);
 if (req_size)
 *req_size = iprv.v0;
 return iprv.status;
 }
 
 /* Restore minimal architectural processor state, set CMC interrupt if necessary
 * and resume execution
 */
 static inline s64
 ia64_pal_mc_resume (u64 set_cmci, u64 save_ptr)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MC_RESUME, set_cmci, save_ptr, 0);
 return iprv.status;
 }
 
 /* Return the memory attributes implemented by the processor */
 static inline s64
 ia64_pal_mem_attrib (u64 *mem_attrib)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MEM_ATTRIB, 0, 0, 0);
 if (mem_attrib)
 *mem_attrib = iprv.v0 & 0xff;
 return iprv.status;
 }
 
 /* Return the amount of memory needed for second phase of processor
 * self-test and the required alignment of memory.
 */
 static inline s64
 ia64_pal_mem_for_test (u64 *bytes_needed, u64 *alignment)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_MEM_FOR_TEST, 0, 0, 0);
 if (bytes_needed)
 *bytes_needed = iprv.v0;
 if (alignment)
 *alignment = iprv.v1;
 return iprv.status;
 }
 
 typedef union pal_perf_mon_info_u {
 u64              ppmi_data;
 struct {
 u64        generic        : 8,
 width        : 8,
 cycles        : 8,
 retired        : 8,
 reserved    : 32;
 } pal_perf_mon_info_s;
 } pal_perf_mon_info_u_t;
 
 /* Return the performance monitor information about what can be counted
 * and how to configure the monitors to count the desired events.
 */
 static inline s64
 ia64_pal_perf_mon_info (u64 *pm_buffer, pal_perf_mon_info_u_t *pm_info)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_PERF_MON_INFO, (unsigned long) pm_buffer, 0, 0);
 if (pm_info)
 pm_info->ppmi_data = iprv.v0;
 return iprv.status;
 }
 
 /* Specifies the physical address of the processor interrupt block
 * and I/O port space.
 */
 static inline s64
 ia64_pal_platform_addr (u64 type, u64 physical_addr)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_PLATFORM_ADDR, type, physical_addr, 0);
 return iprv.status;
 }
 
 /* Set the SAL PMI entrypoint in memory */
 static inline s64
 ia64_pal_pmi_entrypoint (u64 sal_pmi_entry_addr)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_PMI_ENTRYPOINT, sal_pmi_entry_addr, 0, 0);
 return iprv.status;
 }
 
 struct pal_features_s;
 /* Provide information about configurable processor features */
 static inline s64
 ia64_pal_proc_get_features (u64 *features_avail,
 u64 *features_status,
 u64 *features_control,
 u64 features_set)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS(iprv, PAL_PROC_GET_FEATURES, 0, features_set, 0);
 if (iprv.status == 0) {
 *features_avail   = iprv.v0;
 *features_status  = iprv.v1;
 *features_control = iprv.v2;
 }
 return iprv.status;
 }
 
 /* Enable/disable processor dependent features */
 static inline s64
 ia64_pal_proc_set_features (u64 feature_select)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS(iprv, PAL_PROC_SET_FEATURES, feature_select, 0, 0);
 return iprv.status;
 }
 
 /*
 * Put everything in a struct so we avoid the global offset table whenever
 * possible.
 */
 typedef struct ia64_ptce_info_s {
 unsigned long    base;
 u32        count[2];
 u32        stride[2];
 } ia64_ptce_info_t;
 
 /* Return the information required for the architected loop used to purge
 * (initialize) the entire TC
 */
 static inline s64
 ia64_get_ptce (ia64_ptce_info_t *ptce)
 {
 struct ia64_pal_retval iprv;
 
 if (!ptce)
 return -1;
 
 PAL_CALL(iprv, PAL_PTCE_INFO, 0, 0, 0);
 if (iprv.status == 0) {
 ptce->base = iprv.v0;
 ptce->count[0] = iprv.v1 >> 32;
 ptce->count[1] = iprv.v1 & 0xffffffff;
 ptce->stride[0] = iprv.v2 >> 32;
 ptce->stride[1] = iprv.v2 & 0xffffffff;
 }
 return iprv.status;
 }
 
 /* Return info about implemented application and control registers. */
 static inline s64
 ia64_pal_register_info (u64 info_request, u64 *reg_info_1, u64 *reg_info_2)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_REGISTER_INFO, info_request, 0, 0);
 if (reg_info_1)
 *reg_info_1 = iprv.v0;
 if (reg_info_2)
 *reg_info_2 = iprv.v1;
 return iprv.status;
 }
 
 typedef union pal_hints_u {
 unsigned long        ph_data;
 struct {
 unsigned long    si        : 1,
 li        : 1,
 reserved    : 62;
 } pal_hints_s;
 } pal_hints_u_t;
 
 /* Return information about the register stack and RSE for this processor
 * implementation.
 */
 static inline long ia64_pal_rse_info(unsigned long *num_phys_stacked,
 pal_hints_u_t *hints)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_RSE_INFO, 0, 0, 0);
 if (num_phys_stacked)
 *num_phys_stacked = iprv.v0;
 if (hints)
 hints->ph_data = iprv.v1;
 return iprv.status;
 }
 
 /*
 * Set the current hardware resource sharing policy of the processor
 */
 static inline s64
 ia64_pal_set_hw_policy (u64 policy)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_SET_HW_POLICY, policy, 0, 0);
 return iprv.status;
 }
 
 /* Cause the processor to enter    SHUTDOWN state, where prefetching and execution are
 * suspended, but cause cache and TLB coherency to be maintained.
 * This is usually called in IA-32 mode.
 */
 static inline s64
 ia64_pal_shutdown (void)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_SHUTDOWN, 0, 0, 0);
 return iprv.status;
 }
 
 /* Perform the second phase of processor self-test. */
 static inline s64
 ia64_pal_test_proc (u64 test_addr, u64 test_size, u64 attributes, u64 *self_test_state)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_TEST_PROC, test_addr, test_size, attributes);
 if (self_test_state)
 *self_test_state = iprv.v0;
 return iprv.status;
 }
 
 typedef union  pal_version_u {
 u64    pal_version_val;
 struct {
 u64    pv_pal_b_rev        :    8;
 u64    pv_pal_b_model        :    8;
 u64    pv_reserved1        :    8;
 u64    pv_pal_vendor        :    8;
 u64    pv_pal_a_rev        :    8;
 u64    pv_pal_a_model        :    8;
 u64    pv_reserved2        :    16;
 } pal_version_s;
 } pal_version_u_t;
 
 
 /*
 * Return PAL version information.  While the documentation states that
 * PAL_VERSION can be called in either physical or virtual mode, some
 * implementations only allow physical calls.  We don't call it very often,
 * so the overhead isn't worth eliminating.
 */
 static inline s64
 ia64_pal_version (pal_version_u_t *pal_min_version, pal_version_u_t *pal_cur_version)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS(iprv, PAL_VERSION, 0, 0, 0);
 if (pal_min_version)
 pal_min_version->pal_version_val = iprv.v0;
 
 if (pal_cur_version)
 pal_cur_version->pal_version_val = iprv.v1;
 
 return iprv.status;
 }
 
 typedef union pal_tc_info_u {
 u64            pti_val;
 struct {
 u64        num_sets    :    8,
 associativity    :    8,
 num_entries    :    16,
 pf        :    1,
 unified        :    1,
 reduce_tr    :    1,
 reserved    :    29;
 } pal_tc_info_s;
 } pal_tc_info_u_t;
 
 #define tc_reduce_tr        pal_tc_info_s.reduce_tr
 #define tc_unified        pal_tc_info_s.unified
 #define tc_pf            pal_tc_info_s.pf
 #define tc_num_entries        pal_tc_info_s.num_entries
 #define tc_associativity    pal_tc_info_s.associativity
 #define tc_num_sets        pal_tc_info_s.num_sets
 
 
 /* Return information about the virtual memory characteristics of the processor
 * implementation.
 */
 static inline s64
 ia64_pal_vm_info (u64 tc_level, u64 tc_type,  pal_tc_info_u_t *tc_info, u64 *tc_pages)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_VM_INFO, tc_level, tc_type, 0);
 if (tc_info)
 tc_info->pti_val = iprv.v0;
 if (tc_pages)
 *tc_pages = iprv.v1;
 return iprv.status;
 }
 
 /* Get page size information about the virtual memory characteristics of the processor
 * implementation.
 */
 static inline s64 ia64_pal_vm_page_size(u64 *tr_pages, u64 *vw_pages)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_VM_PAGE_SIZE, 0, 0, 0);
 if (tr_pages)
 *tr_pages = iprv.v0;
 if (vw_pages)
 *vw_pages = iprv.v1;
 return iprv.status;
 }
 
 typedef union pal_vm_info_1_u {
 u64            pvi1_val;
 struct {
 u64        vw        : 1,
 phys_add_size    : 7,
 key_size    : 8,
 max_pkr        : 8,
 hash_tag_id    : 8,
 max_dtr_entry    : 8,
 max_itr_entry    : 8,
 max_unique_tcs    : 8,
 num_tc_levels    : 8;
 } pal_vm_info_1_s;
 } pal_vm_info_1_u_t;
 
 #define PAL_MAX_PURGES        0xFFFF        /* all ones is means unlimited */
 
 typedef union pal_vm_info_2_u {
 u64            pvi2_val;
 struct {
 u64        impl_va_msb    : 8,
 rid_size    : 8,
 max_purges    : 16,
 reserved    : 32;
 } pal_vm_info_2_s;
 } pal_vm_info_2_u_t;
 
 /* Get summary information about the virtual memory characteristics of the processor
 * implementation.
 */
 static inline s64
 ia64_pal_vm_summary (pal_vm_info_1_u_t *vm_info_1, pal_vm_info_2_u_t *vm_info_2)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_VM_SUMMARY, 0, 0, 0);
 if (vm_info_1)
 vm_info_1->pvi1_val = iprv.v0;
 if (vm_info_2)
 vm_info_2->pvi2_val = iprv.v1;
 return iprv.status;
 }
 
 typedef union pal_vp_info_u {
 u64            pvi_val;
 struct {
 u64        index:        48,    /* virtual feature set info */
 vmm_id:        16;    /* feature set id */
 } pal_vp_info_s;
 } pal_vp_info_u_t;
 
 /*
 * Returns information about virtual processor features
 */
 static inline s64
 ia64_pal_vp_info (u64 feature_set, u64 vp_buffer, u64 *vp_info, u64 *vmm_id)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_VP_INFO, feature_set, vp_buffer, 0);
 if (vp_info)
 *vp_info = iprv.v0;
 if (vmm_id)
 *vmm_id = iprv.v1;
 return iprv.status;
 }
 
 typedef union pal_itr_valid_u {
 u64            piv_val;
 struct {
 u64        access_rights_valid    : 1,
 priv_level_valid    : 1,
 dirty_bit_valid        : 1,
 mem_attr_valid        : 1,
 reserved        : 60;
 } pal_tr_valid_s;
 } pal_tr_valid_u_t;
 
 /* Read a translation register */
 static inline s64
 ia64_pal_tr_read (u64 reg_num, u64 tr_type, u64 *tr_buffer, pal_tr_valid_u_t *tr_valid)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL_PHYS_STK(iprv, PAL_VM_TR_READ, reg_num, tr_type,(u64)ia64_tpa(tr_buffer));
 if (tr_valid)
 tr_valid->piv_val = iprv.v0;
 return iprv.status;
 }
 
 /*
 * PAL_PREFETCH_VISIBILITY transaction types
 */
 #define PAL_VISIBILITY_VIRTUAL        0
 #define PAL_VISIBILITY_PHYSICAL        1
 
 /*
 * PAL_PREFETCH_VISIBILITY return codes
 */
 #define PAL_VISIBILITY_OK        1
 #define PAL_VISIBILITY_OK_REMOTE_NEEDED    0
 #define PAL_VISIBILITY_INVAL_ARG    -2
 #define PAL_VISIBILITY_ERROR        -3
 
 static inline s64
 ia64_pal_prefetch_visibility (s64 trans_type)
 {
 struct ia64_pal_retval iprv;
 PAL_CALL(iprv, PAL_PREFETCH_VISIBILITY, trans_type, 0, 0);
 return iprv.status;
 }
 
 /* data structure for getting information on logical to physical mappings */
 typedef union pal_log_overview_u {
 struct {
 u64    num_log        :16,    /* Total number of logical
 * processors on this die
 */
 tpc        :8,    /* Threads per core */
 reserved3    :8,    /* Reserved */
 cpp        :8,    /* Cores per processor */
 reserved2    :8,    /* Reserved */
 ppid        :8,    /* Physical processor ID */
 reserved1    :8;    /* Reserved */
 } overview_bits;
 u64 overview_data;
 } pal_log_overview_t;
 
 typedef union pal_proc_n_log_info1_u{
 struct {
 u64    tid        :16,    /* Thread id */
 reserved2    :16,    /* Reserved */
 cid        :16,    /* Core id */
 reserved1    :16;    /* Reserved */
 } ppli1_bits;
 u64    ppli1_data;
 } pal_proc_n_log_info1_t;
 
 typedef union pal_proc_n_log_info2_u {
 struct {
 u64    la        :16,    /* Logical address */
 reserved    :48;    /* Reserved */
 } ppli2_bits;
 u64    ppli2_data;
 } pal_proc_n_log_info2_t;
 
 typedef struct pal_logical_to_physical_s
 {
 pal_log_overview_t overview;
 pal_proc_n_log_info1_t ppli1;
 pal_proc_n_log_info2_t ppli2;
 } pal_logical_to_physical_t;
 
 #define overview_num_log    overview.overview_bits.num_log
 #define overview_tpc        overview.overview_bits.tpc
 #define overview_cpp        overview.overview_bits.cpp
 #define overview_ppid        overview.overview_bits.ppid
 #define log1_tid        ppli1.ppli1_bits.tid
 #define log1_cid        ppli1.ppli1_bits.cid
 #define log2_la            ppli2.ppli2_bits.la
 
 /* Get information on logical to physical processor mappings. */
 static inline s64
 ia64_pal_logical_to_phys(u64 proc_number, pal_logical_to_physical_t *mapping)
 {
 struct ia64_pal_retval iprv;
 
 PAL_CALL(iprv, PAL_LOGICAL_TO_PHYSICAL, proc_number, 0, 0);
 
 if (iprv.status == PAL_STATUS_SUCCESS)
 {
 mapping->overview.overview_data = iprv.v0;
 mapping->ppli1.ppli1_data = iprv.v1;
 mapping->ppli2.ppli2_data = iprv.v2;
 }
 
 return iprv.status;
 }
 
 typedef struct pal_cache_shared_info_s
 {
 u64 num_shared;
 pal_proc_n_log_info1_t ppli1;
 pal_proc_n_log_info2_t ppli2;
 } pal_cache_shared_info_t;
 
 /* Get information on logical to physical processor mappings. */
 static inline s64
 ia64_pal_cache_shared_info(u64 level,
 u64 type,
 u64 proc_number,
 pal_cache_shared_info_t *info)
 {
 struct ia64_pal_retval iprv;
 
 PAL_CALL(iprv, PAL_CACHE_SHARED_INFO, level, type, proc_number);
 
 if (iprv.status == PAL_STATUS_SUCCESS) {
 info->num_shared = iprv.v0;
 info->ppli1.ppli1_data = iprv.v1;
 info->ppli2.ppli2_data = iprv.v2;
 }
 
 return iprv.status;
 }
 #endif /* __ASSEMBLY__ */
 
 #endif /* _ASM_IA64_PAL_H */
 
 |