| Viewing file:  hypercall.h (16.61 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
/******************************************************************************* hypercall.h
 *
 * Linux-specific hypervisor handling.
 *
 * Copyright (c) 2002-2004, K A Fraser
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License version 2
 * as published by the Free Software Foundation; or, when distributed
 * separately from the Linux kernel or incorporated into other
 * software packages, subject to the following license:
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this source file (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy, modify,
 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
 * and to permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */
 
 #ifndef _ASM_X86_XEN_HYPERCALL_H
 #define _ASM_X86_XEN_HYPERCALL_H
 
 #include <linux/kernel.h>
 #include <linux/spinlock.h>
 #include <linux/errno.h>
 #include <linux/string.h>
 #include <linux/types.h>
 
 #include <trace/events/xen.h>
 
 #include <asm/page.h>
 #include <asm/pgtable.h>
 
 #include <xen/interface/xen.h>
 #include <xen/interface/sched.h>
 #include <xen/interface/physdev.h>
 #include <xen/interface/platform.h>
 #include <xen/interface/xen-mca.h>
 
 /*
 * The hypercall asms have to meet several constraints:
 * - Work on 32- and 64-bit.
 *    The two architectures put their arguments in different sets of
 *    registers.
 *
 * - Work around asm syntax quirks
 *    It isn't possible to specify one of the rNN registers in a
 *    constraint, so we use explicit register variables to get the
 *    args into the right place.
 *
 * - Mark all registers as potentially clobbered
 *    Even unused parameters can be clobbered by the hypervisor, so we
 *    need to make sure gcc knows it.
 *
 * - Avoid compiler bugs.
 *    This is the tricky part.  Because x86_32 has such a constrained
 *    register set, gcc versions below 4.3 have trouble generating
 *    code when all the arg registers and memory are trashed by the
 *    asm.  There are syntactically simpler ways of achieving the
 *    semantics below, but they cause the compiler to crash.
 *
 *    The only combination I found which works is:
 *     - assign the __argX variables first
 *     - list all actually used parameters as "+r" (__argX)
 *     - clobber the rest
 *
 * The result certainly isn't pretty, and it really shows up cpp's
 * weakness as as macro language.  Sorry.  (But let's just give thanks
 * there aren't more than 5 arguments...)
 */
 
 extern struct { char _entry[32]; } hypercall_page[];
 
 #define __HYPERCALL        "call hypercall_page+%c[offset]"
 #define __HYPERCALL_ENTRY(x)                        \
 [offset] "i" (__HYPERVISOR_##x * sizeof(hypercall_page[0]))
 
 #ifdef CONFIG_X86_32
 #define __HYPERCALL_RETREG    "eax"
 #define __HYPERCALL_ARG1REG    "ebx"
 #define __HYPERCALL_ARG2REG    "ecx"
 #define __HYPERCALL_ARG3REG    "edx"
 #define __HYPERCALL_ARG4REG    "esi"
 #define __HYPERCALL_ARG5REG    "edi"
 #else
 #define __HYPERCALL_RETREG    "rax"
 #define __HYPERCALL_ARG1REG    "rdi"
 #define __HYPERCALL_ARG2REG    "rsi"
 #define __HYPERCALL_ARG3REG    "rdx"
 #define __HYPERCALL_ARG4REG    "r10"
 #define __HYPERCALL_ARG5REG    "r8"
 #endif
 
 #define __HYPERCALL_DECLS                        \
 register unsigned long __res  asm(__HYPERCALL_RETREG);        \
 register unsigned long __arg1 asm(__HYPERCALL_ARG1REG) = __arg1; \
 register unsigned long __arg2 asm(__HYPERCALL_ARG2REG) = __arg2; \
 register unsigned long __arg3 asm(__HYPERCALL_ARG3REG) = __arg3; \
 register unsigned long __arg4 asm(__HYPERCALL_ARG4REG) = __arg4; \
 register unsigned long __arg5 asm(__HYPERCALL_ARG5REG) = __arg5;
 
 #define __HYPERCALL_0PARAM    "=r" (__res)
 #define __HYPERCALL_1PARAM    __HYPERCALL_0PARAM, "+r" (__arg1)
 #define __HYPERCALL_2PARAM    __HYPERCALL_1PARAM, "+r" (__arg2)
 #define __HYPERCALL_3PARAM    __HYPERCALL_2PARAM, "+r" (__arg3)
 #define __HYPERCALL_4PARAM    __HYPERCALL_3PARAM, "+r" (__arg4)
 #define __HYPERCALL_5PARAM    __HYPERCALL_4PARAM, "+r" (__arg5)
 
 #define __HYPERCALL_0ARG()
 #define __HYPERCALL_1ARG(a1)                        \
 __HYPERCALL_0ARG()        __arg1 = (unsigned long)(a1);
 #define __HYPERCALL_2ARG(a1,a2)                        \
 __HYPERCALL_1ARG(a1)        __arg2 = (unsigned long)(a2);
 #define __HYPERCALL_3ARG(a1,a2,a3)                    \
 __HYPERCALL_2ARG(a1,a2)        __arg3 = (unsigned long)(a3);
 #define __HYPERCALL_4ARG(a1,a2,a3,a4)                    \
 __HYPERCALL_3ARG(a1,a2,a3)    __arg4 = (unsigned long)(a4);
 #define __HYPERCALL_5ARG(a1,a2,a3,a4,a5)                \
 __HYPERCALL_4ARG(a1,a2,a3,a4)    __arg5 = (unsigned long)(a5);
 
 #define __HYPERCALL_CLOBBER5    "memory"
 #define __HYPERCALL_CLOBBER4    __HYPERCALL_CLOBBER5, __HYPERCALL_ARG5REG
 #define __HYPERCALL_CLOBBER3    __HYPERCALL_CLOBBER4, __HYPERCALL_ARG4REG
 #define __HYPERCALL_CLOBBER2    __HYPERCALL_CLOBBER3, __HYPERCALL_ARG3REG
 #define __HYPERCALL_CLOBBER1    __HYPERCALL_CLOBBER2, __HYPERCALL_ARG2REG
 #define __HYPERCALL_CLOBBER0    __HYPERCALL_CLOBBER1, __HYPERCALL_ARG1REG
 
 #define _hypercall0(type, name)                        \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_0ARG();                        \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_0PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER0);                \
 (type)__res;                            \
 })
 
 #define _hypercall1(type, name, a1)                    \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_1ARG(a1);                        \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_1PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER1);                \
 (type)__res;                            \
 })
 
 #define _hypercall2(type, name, a1, a2)                    \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_2ARG(a1, a2);                    \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_2PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER2);                \
 (type)__res;                            \
 })
 
 #define _hypercall3(type, name, a1, a2, a3)                \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_3ARG(a1, a2, a3);                    \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_3PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER3);                \
 (type)__res;                            \
 })
 
 #define _hypercall4(type, name, a1, a2, a3, a4)                \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_4ARG(a1, a2, a3, a4);                \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_4PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER4);                \
 (type)__res;                            \
 })
 
 #define _hypercall5(type, name, a1, a2, a3, a4, a5)            \
 ({                                    \
 __HYPERCALL_DECLS;                        \
 __HYPERCALL_5ARG(a1, a2, a3, a4, a5);                \
 asm volatile (__HYPERCALL                    \
 : __HYPERCALL_5PARAM                \
 : __HYPERCALL_ENTRY(name)                \
 : __HYPERCALL_CLOBBER5);                \
 (type)__res;                            \
 })
 
 static inline long
 privcmd_call(unsigned call,
 unsigned long a1, unsigned long a2,
 unsigned long a3, unsigned long a4,
 unsigned long a5)
 {
 __HYPERCALL_DECLS;
 __HYPERCALL_5ARG(a1, a2, a3, a4, a5);
 
 asm volatile("call *%[call]"
 : __HYPERCALL_5PARAM
 : [call] "a" (&hypercall_page[call])
 : __HYPERCALL_CLOBBER5);
 
 return (long)__res;
 }
 
 static inline int
 HYPERVISOR_set_trap_table(struct trap_info *table)
 {
 return _hypercall1(int, set_trap_table, table);
 }
 
 static inline int
 HYPERVISOR_mmu_update(struct mmu_update *req, int count,
 int *success_count, domid_t domid)
 {
 return _hypercall4(int, mmu_update, req, count, success_count, domid);
 }
 
 static inline int
 HYPERVISOR_mmuext_op(struct mmuext_op *op, int count,
 int *success_count, domid_t domid)
 {
 return _hypercall4(int, mmuext_op, op, count, success_count, domid);
 }
 
 static inline int
 HYPERVISOR_set_gdt(unsigned long *frame_list, int entries)
 {
 return _hypercall2(int, set_gdt, frame_list, entries);
 }
 
 static inline int
 HYPERVISOR_stack_switch(unsigned long ss, unsigned long esp)
 {
 return _hypercall2(int, stack_switch, ss, esp);
 }
 
 #ifdef CONFIG_X86_32
 static inline int
 HYPERVISOR_set_callbacks(unsigned long event_selector,
 unsigned long event_address,
 unsigned long failsafe_selector,
 unsigned long failsafe_address)
 {
 return _hypercall4(int, set_callbacks,
 event_selector, event_address,
 failsafe_selector, failsafe_address);
 }
 #else  /* CONFIG_X86_64 */
 static inline int
 HYPERVISOR_set_callbacks(unsigned long event_address,
 unsigned long failsafe_address,
 unsigned long syscall_address)
 {
 return _hypercall3(int, set_callbacks,
 event_address, failsafe_address,
 syscall_address);
 }
 #endif  /* CONFIG_X86_{32,64} */
 
 static inline int
 HYPERVISOR_callback_op(int cmd, void *arg)
 {
 return _hypercall2(int, callback_op, cmd, arg);
 }
 
 static inline int
 HYPERVISOR_fpu_taskswitch(int set)
 {
 return _hypercall1(int, fpu_taskswitch, set);
 }
 
 static inline int
 HYPERVISOR_sched_op(int cmd, void *arg)
 {
 return _hypercall2(int, sched_op, cmd, arg);
 }
 
 static inline long
 HYPERVISOR_set_timer_op(u64 timeout)
 {
 unsigned long timeout_hi = (unsigned long)(timeout>>32);
 unsigned long timeout_lo = (unsigned long)timeout;
 return _hypercall2(long, set_timer_op, timeout_lo, timeout_hi);
 }
 
 static inline int
 HYPERVISOR_mca(struct xen_mc *mc_op)
 {
 mc_op->interface_version = XEN_MCA_INTERFACE_VERSION;
 return _hypercall1(int, mca, mc_op);
 }
 
 static inline int
 HYPERVISOR_dom0_op(struct xen_platform_op *platform_op)
 {
 platform_op->interface_version = XENPF_INTERFACE_VERSION;
 return _hypercall1(int, dom0_op, platform_op);
 }
 
 static inline int
 HYPERVISOR_set_debugreg(int reg, unsigned long value)
 {
 return _hypercall2(int, set_debugreg, reg, value);
 }
 
 static inline unsigned long
 HYPERVISOR_get_debugreg(int reg)
 {
 return _hypercall1(unsigned long, get_debugreg, reg);
 }
 
 static inline int
 HYPERVISOR_update_descriptor(u64 ma, u64 desc)
 {
 if (sizeof(u64) == sizeof(long))
 return _hypercall2(int, update_descriptor, ma, desc);
 return _hypercall4(int, update_descriptor, ma, ma>>32, desc, desc>>32);
 }
 
 static inline int
 HYPERVISOR_memory_op(unsigned int cmd, void *arg)
 {
 return _hypercall2(int, memory_op, cmd, arg);
 }
 
 static inline int
 HYPERVISOR_multicall(void *call_list, int nr_calls)
 {
 return _hypercall2(int, multicall, call_list, nr_calls);
 }
 
 static inline int
 HYPERVISOR_update_va_mapping(unsigned long va, pte_t new_val,
 unsigned long flags)
 {
 if (sizeof(new_val) == sizeof(long))
 return _hypercall3(int, update_va_mapping, va,
 new_val.pte, flags);
 else
 return _hypercall4(int, update_va_mapping, va,
 new_val.pte, new_val.pte >> 32, flags);
 }
 extern int __must_check xen_event_channel_op_compat(int, void *);
 
 static inline int
 HYPERVISOR_event_channel_op(int cmd, void *arg)
 {
 int rc = _hypercall2(int, event_channel_op, cmd, arg);
 if (unlikely(rc == -ENOSYS))
 rc = xen_event_channel_op_compat(cmd, arg);
 return rc;
 }
 
 static inline int
 HYPERVISOR_xen_version(int cmd, void *arg)
 {
 return _hypercall2(int, xen_version, cmd, arg);
 }
 
 static inline int
 HYPERVISOR_console_io(int cmd, int count, char *str)
 {
 return _hypercall3(int, console_io, cmd, count, str);
 }
 
 extern int __must_check xen_physdev_op_compat(int, void *);
 
 static inline int
 HYPERVISOR_physdev_op(int cmd, void *arg)
 {
 int rc = _hypercall2(int, physdev_op, cmd, arg);
 if (unlikely(rc == -ENOSYS))
 rc = xen_physdev_op_compat(cmd, arg);
 return rc;
 }
 
 static inline int
 HYPERVISOR_grant_table_op(unsigned int cmd, void *uop, unsigned int count)
 {
 return _hypercall3(int, grant_table_op, cmd, uop, count);
 }
 
 static inline int
 HYPERVISOR_update_va_mapping_otherdomain(unsigned long va, pte_t new_val,
 unsigned long flags, domid_t domid)
 {
 if (sizeof(new_val) == sizeof(long))
 return _hypercall4(int, update_va_mapping_otherdomain, va,
 new_val.pte, flags, domid);
 else
 return _hypercall5(int, update_va_mapping_otherdomain, va,
 new_val.pte, new_val.pte >> 32,
 flags, domid);
 }
 
 static inline int
 HYPERVISOR_vm_assist(unsigned int cmd, unsigned int type)
 {
 return _hypercall2(int, vm_assist, cmd, type);
 }
 
 static inline int
 HYPERVISOR_vcpu_op(int cmd, int vcpuid, void *extra_args)
 {
 return _hypercall3(int, vcpu_op, cmd, vcpuid, extra_args);
 }
 
 #ifdef CONFIG_X86_64
 static inline int
 HYPERVISOR_set_segment_base(int reg, unsigned long value)
 {
 return _hypercall2(int, set_segment_base, reg, value);
 }
 #endif
 
 static inline int
 HYPERVISOR_suspend(unsigned long start_info_mfn)
 {
 struct sched_shutdown r = { .reason = SHUTDOWN_suspend };
 
 /*
 * For a PV guest the tools require that the start_info mfn be
 * present in rdx/edx when the hypercall is made. Per the
 * hypercall calling convention this is the third hypercall
 * argument, which is start_info_mfn here.
 */
 return _hypercall3(int, sched_op, SCHEDOP_shutdown, &r, start_info_mfn);
 }
 
 static inline int
 HYPERVISOR_nmi_op(unsigned long op, unsigned long arg)
 {
 return _hypercall2(int, nmi_op, op, arg);
 }
 
 static inline unsigned long __must_check
 HYPERVISOR_hvm_op(int op, void *arg)
 {
 return _hypercall2(unsigned long, hvm_op, op, arg);
 }
 
 static inline int
 HYPERVISOR_tmem_op(
 struct tmem_op *op)
 {
 return _hypercall1(int, tmem_op, op);
 }
 
 static inline void
 MULTI_fpu_taskswitch(struct multicall_entry *mcl, int set)
 {
 mcl->op = __HYPERVISOR_fpu_taskswitch;
 mcl->args[0] = set;
 
 trace_xen_mc_entry(mcl, 1);
 }
 
 static inline void
 MULTI_update_va_mapping(struct multicall_entry *mcl, unsigned long va,
 pte_t new_val, unsigned long flags)
 {
 mcl->op = __HYPERVISOR_update_va_mapping;
 mcl->args[0] = va;
 if (sizeof(new_val) == sizeof(long)) {
 mcl->args[1] = new_val.pte;
 mcl->args[2] = flags;
 } else {
 mcl->args[1] = new_val.pte;
 mcl->args[2] = new_val.pte >> 32;
 mcl->args[3] = flags;
 }
 
 trace_xen_mc_entry(mcl, sizeof(new_val) == sizeof(long) ? 3 : 4);
 }
 
 static inline void
 MULTI_grant_table_op(struct multicall_entry *mcl, unsigned int cmd,
 void *uop, unsigned int count)
 {
 mcl->op = __HYPERVISOR_grant_table_op;
 mcl->args[0] = cmd;
 mcl->args[1] = (unsigned long)uop;
 mcl->args[2] = count;
 
 trace_xen_mc_entry(mcl, 3);
 }
 
 static inline void
 MULTI_update_va_mapping_otherdomain(struct multicall_entry *mcl, unsigned long va,
 pte_t new_val, unsigned long flags,
 domid_t domid)
 {
 mcl->op = __HYPERVISOR_update_va_mapping_otherdomain;
 mcl->args[0] = va;
 if (sizeof(new_val) == sizeof(long)) {
 mcl->args[1] = new_val.pte;
 mcl->args[2] = flags;
 mcl->args[3] = domid;
 } else {
 mcl->args[1] = new_val.pte;
 mcl->args[2] = new_val.pte >> 32;
 mcl->args[3] = flags;
 mcl->args[4] = domid;
 }
 
 trace_xen_mc_entry(mcl, sizeof(new_val) == sizeof(long) ? 4 : 5);
 }
 
 static inline void
 MULTI_update_descriptor(struct multicall_entry *mcl, u64 maddr,
 struct desc_struct desc)
 {
 mcl->op = __HYPERVISOR_update_descriptor;
 if (sizeof(maddr) == sizeof(long)) {
 mcl->args[0] = maddr;
 mcl->args[1] = *(unsigned long *)&desc;
 } else {
 mcl->args[0] = maddr;
 mcl->args[1] = maddr >> 32;
 mcl->args[2] = desc.a;
 mcl->args[3] = desc.b;
 }
 
 trace_xen_mc_entry(mcl, sizeof(maddr) == sizeof(long) ? 2 : 4);
 }
 
 static inline void
 MULTI_memory_op(struct multicall_entry *mcl, unsigned int cmd, void *arg)
 {
 mcl->op = __HYPERVISOR_memory_op;
 mcl->args[0] = cmd;
 mcl->args[1] = (unsigned long)arg;
 
 trace_xen_mc_entry(mcl, 2);
 }
 
 static inline void
 MULTI_mmu_update(struct multicall_entry *mcl, struct mmu_update *req,
 int count, int *success_count, domid_t domid)
 {
 mcl->op = __HYPERVISOR_mmu_update;
 mcl->args[0] = (unsigned long)req;
 mcl->args[1] = count;
 mcl->args[2] = (unsigned long)success_count;
 mcl->args[3] = domid;
 
 trace_xen_mc_entry(mcl, 4);
 }
 
 static inline void
 MULTI_mmuext_op(struct multicall_entry *mcl, struct mmuext_op *op, int count,
 int *success_count, domid_t domid)
 {
 mcl->op = __HYPERVISOR_mmuext_op;
 mcl->args[0] = (unsigned long)op;
 mcl->args[1] = count;
 mcl->args[2] = (unsigned long)success_count;
 mcl->args[3] = domid;
 
 trace_xen_mc_entry(mcl, 4);
 }
 
 static inline void
 MULTI_set_gdt(struct multicall_entry *mcl, unsigned long *frames, int entries)
 {
 mcl->op = __HYPERVISOR_set_gdt;
 mcl->args[0] = (unsigned long)frames;
 mcl->args[1] = entries;
 
 trace_xen_mc_entry(mcl, 2);
 }
 
 static inline void
 MULTI_stack_switch(struct multicall_entry *mcl,
 unsigned long ss, unsigned long esp)
 {
 mcl->op = __HYPERVISOR_stack_switch;
 mcl->args[0] = ss;
 mcl->args[1] = esp;
 
 trace_xen_mc_entry(mcl, 2);
 }
 
 #endif /* _ASM_X86_XEN_HYPERCALL_H */
 
 |