| Viewing file:  bitops.h (10.81 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
#ifndef _ASM_IA64_BITOPS_H#define _ASM_IA64_BITOPS_H
 
 /*
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 *    David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * 02/06/02 find_next_bit() and find_first_bit() added from Erich Focht's ia64
 * O(1) scheduler patch
 */
 
 #ifndef _LINUX_BITOPS_H
 #error only <linux/bitops.h> can be included directly
 #endif
 
 #include <linux/compiler.h>
 #include <linux/types.h>
 #include <asm/intrinsics.h>
 #include <asm/barrier.h>
 
 /**
 * set_bit - Atomically set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * This function is atomic and may not be reordered.  See __set_bit()
 * if you do not require the atomic guarantees.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 *
 * The address must be (at least) "long" aligned.
 * Note that there are driver (e.g., eepro100) which use these operations to
 * operate on hw-defined data-structures, so we can't easily change these
 * operations to force a bigger alignment.
 *
 * bit 0 is the LSB of addr; bit 32 is the LSB of (addr+1).
 */
 static __inline__ void
 set_bit (int nr, volatile void *addr)
 {
 __u32 bit, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 bit = 1 << (nr & 31);
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old | bit;
 } while (cmpxchg_acq(m, old, new) != old);
 }
 
 /**
 * __set_bit - Set a bit in memory
 * @nr: the bit to set
 * @addr: the address to start counting from
 *
 * Unlike set_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
 static __inline__ void
 __set_bit (int nr, volatile void *addr)
 {
 *((__u32 *) addr + (nr >> 5)) |= (1 << (nr & 31));
 }
 
 /**
 * clear_bit - Clears a bit in memory
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit() is atomic and may not be reordered.  However, it does
 * not contain a memory barrier, so if it is used for locking purposes,
 * you should call smp_mb__before_atomic() and/or smp_mb__after_atomic()
 * in order to ensure changes are visible on other processors.
 */
 static __inline__ void
 clear_bit (int nr, volatile void *addr)
 {
 __u32 mask, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 mask = ~(1 << (nr & 31));
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old & mask;
 } while (cmpxchg_acq(m, old, new) != old);
 }
 
 /**
 * clear_bit_unlock - Clears a bit in memory with release
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * clear_bit_unlock() is atomic and may not be reordered.  It does
 * contain a memory barrier suitable for unlock type operations.
 */
 static __inline__ void
 clear_bit_unlock (int nr, volatile void *addr)
 {
 __u32 mask, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 mask = ~(1 << (nr & 31));
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old & mask;
 } while (cmpxchg_rel(m, old, new) != old);
 }
 
 /**
 * __clear_bit_unlock - Non-atomically clears a bit in memory with release
 * @nr: Bit to clear
 * @addr: Address to start counting from
 *
 * Similarly to clear_bit_unlock, the implementation uses a store
 * with release semantics. See also arch_spin_unlock().
 */
 static __inline__ void
 __clear_bit_unlock(int nr, void *addr)
 {
 __u32 * const m = (__u32 *) addr + (nr >> 5);
 __u32 const new = *m & ~(1 << (nr & 31));
 
 ia64_st4_rel_nta(m, new);
 }
 
 /**
 * __clear_bit - Clears a bit in memory (non-atomic version)
 * @nr: the bit to clear
 * @addr: the address to start counting from
 *
 * Unlike clear_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
 static __inline__ void
 __clear_bit (int nr, volatile void *addr)
 {
 *((__u32 *) addr + (nr >> 5)) &= ~(1 << (nr & 31));
 }
 
 /**
 * change_bit - Toggle a bit in memory
 * @nr: Bit to toggle
 * @addr: Address to start counting from
 *
 * change_bit() is atomic and may not be reordered.
 * Note that @nr may be almost arbitrarily large; this function is not
 * restricted to acting on a single-word quantity.
 */
 static __inline__ void
 change_bit (int nr, volatile void *addr)
 {
 __u32 bit, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 bit = (1 << (nr & 31));
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old ^ bit;
 } while (cmpxchg_acq(m, old, new) != old);
 }
 
 /**
 * __change_bit - Toggle a bit in memory
 * @nr: the bit to toggle
 * @addr: the address to start counting from
 *
 * Unlike change_bit(), this function is non-atomic and may be reordered.
 * If it's called on the same region of memory simultaneously, the effect
 * may be that only one operation succeeds.
 */
 static __inline__ void
 __change_bit (int nr, volatile void *addr)
 {
 *((__u32 *) addr + (nr >> 5)) ^= (1 << (nr & 31));
 }
 
 /**
 * test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies the acquisition side of the memory barrier.
 */
 static __inline__ int
 test_and_set_bit (int nr, volatile void *addr)
 {
 __u32 bit, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 bit = 1 << (nr & 31);
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old | bit;
 } while (cmpxchg_acq(m, old, new) != old);
 return (old & bit) != 0;
 }
 
 /**
 * test_and_set_bit_lock - Set a bit and return its old value for lock
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This is the same as test_and_set_bit on ia64
 */
 #define test_and_set_bit_lock test_and_set_bit
 
 /**
 * __test_and_set_bit - Set a bit and return its old value
 * @nr: Bit to set
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
 static __inline__ int
 __test_and_set_bit (int nr, volatile void *addr)
 {
 __u32 *p = (__u32 *) addr + (nr >> 5);
 __u32 m = 1 << (nr & 31);
 int oldbitset = (*p & m) != 0;
 
 *p |= m;
 return oldbitset;
 }
 
 /**
 * test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies the acquisition side of the memory barrier.
 */
 static __inline__ int
 test_and_clear_bit (int nr, volatile void *addr)
 {
 __u32 mask, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 mask = ~(1 << (nr & 31));
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old & mask;
 } while (cmpxchg_acq(m, old, new) != old);
 return (old & ~mask) != 0;
 }
 
 /**
 * __test_and_clear_bit - Clear a bit and return its old value
 * @nr: Bit to clear
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 * If two examples of this operation race, one can appear to succeed
 * but actually fail.  You must protect multiple accesses with a lock.
 */
 static __inline__ int
 __test_and_clear_bit(int nr, volatile void * addr)
 {
 __u32 *p = (__u32 *) addr + (nr >> 5);
 __u32 m = 1 << (nr & 31);
 int oldbitset = (*p & m) != 0;
 
 *p &= ~m;
 return oldbitset;
 }
 
 /**
 * test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is atomic and cannot be reordered.
 * It also implies the acquisition side of the memory barrier.
 */
 static __inline__ int
 test_and_change_bit (int nr, volatile void *addr)
 {
 __u32 bit, old, new;
 volatile __u32 *m;
 CMPXCHG_BUGCHECK_DECL
 
 m = (volatile __u32 *) addr + (nr >> 5);
 bit = (1 << (nr & 31));
 do {
 CMPXCHG_BUGCHECK(m);
 old = *m;
 new = old ^ bit;
 } while (cmpxchg_acq(m, old, new) != old);
 return (old & bit) != 0;
 }
 
 /**
 * __test_and_change_bit - Change a bit and return its old value
 * @nr: Bit to change
 * @addr: Address to count from
 *
 * This operation is non-atomic and can be reordered.
 */
 static __inline__ int
 __test_and_change_bit (int nr, void *addr)
 {
 __u32 old, bit = (1 << (nr & 31));
 __u32 *m = (__u32 *) addr + (nr >> 5);
 
 old = *m;
 *m = old ^ bit;
 return (old & bit) != 0;
 }
 
 static __inline__ int
 test_bit (int nr, const volatile void *addr)
 {
 return 1 & (((const volatile __u32 *) addr)[nr >> 5] >> (nr & 31));
 }
 
 /**
 * ffz - find the first zero bit in a long word
 * @x: The long word to find the bit in
 *
 * Returns the bit-number (0..63) of the first (least significant) zero bit.
 * Undefined if no zero exists, so code should check against ~0UL first...
 */
 static inline unsigned long
 ffz (unsigned long x)
 {
 unsigned long result;
 
 result = ia64_popcnt(x & (~x - 1));
 return result;
 }
 
 /**
 * __ffs - find first bit in word.
 * @x: The word to search
 *
 * Undefined if no bit exists, so code should check against 0 first.
 */
 static __inline__ unsigned long
 __ffs (unsigned long x)
 {
 unsigned long result;
 
 result = ia64_popcnt((x-1) & ~x);
 return result;
 }
 
 #ifdef __KERNEL__
 
 /*
 * Return bit number of last (most-significant) bit set.  Undefined
 * for x==0.  Bits are numbered from 0..63 (e.g., ia64_fls(9) == 3).
 */
 static inline unsigned long
 ia64_fls (unsigned long x)
 {
 long double d = x;
 long exp;
 
 exp = ia64_getf_exp(d);
 return exp - 0xffff;
 }
 
 /*
 * Find the last (most significant) bit set.  Returns 0 for x==0 and
 * bits are numbered from 1..32 (e.g., fls(9) == 4).
 */
 static inline int
 fls (int t)
 {
 unsigned long x = t & 0xffffffffu;
 
 if (!x)
 return 0;
 x |= x >> 1;
 x |= x >> 2;
 x |= x >> 4;
 x |= x >> 8;
 x |= x >> 16;
 return ia64_popcnt(x);
 }
 
 /*
 * Find the last (most significant) bit set.  Undefined for x==0.
 * Bits are numbered from 0..63 (e.g., __fls(9) == 3).
 */
 static inline unsigned long
 __fls (unsigned long x)
 {
 x |= x >> 1;
 x |= x >> 2;
 x |= x >> 4;
 x |= x >> 8;
 x |= x >> 16;
 x |= x >> 32;
 return ia64_popcnt(x) - 1;
 }
 
 #include <asm-generic/bitops/fls64.h>
 
 #include <asm-generic/bitops/builtin-ffs.h>
 
 /*
 * hweightN: returns the hamming weight (i.e. the number
 * of bits set) of a N-bit word
 */
 static __inline__ unsigned long __arch_hweight64(unsigned long x)
 {
 unsigned long result;
 result = ia64_popcnt(x);
 return result;
 }
 
 #define __arch_hweight32(x) ((unsigned int) __arch_hweight64((x) & 0xfffffffful))
 #define __arch_hweight16(x) ((unsigned int) __arch_hweight64((x) & 0xfffful))
 #define __arch_hweight8(x)  ((unsigned int) __arch_hweight64((x) & 0xfful))
 
 #include <asm-generic/bitops/const_hweight.h>
 
 #endif /* __KERNEL__ */
 
 #include <asm-generic/bitops/find.h>
 
 #ifdef __KERNEL__
 
 #include <asm-generic/bitops/le.h>
 
 #include <asm-generic/bitops/ext2-atomic-setbit.h>
 
 #include <asm-generic/bitops/sched.h>
 
 #endif /* __KERNEL__ */
 
 #endif /* _ASM_IA64_BITOPS_H */
 
 |