| Viewing file:  floppy.h (6.61 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
/*    Architecture specific parts of the Floppy driver*
 *    Linux/PA-RISC Project (http://www.parisc-linux.org/)
 *    Copyright (C) 2000 Matthew Wilcox (willy a debian . org)
 *    Copyright (C) 2000 Dave Kennedy
 *
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 */
 #ifndef __ASM_PARISC_FLOPPY_H
 #define __ASM_PARISC_FLOPPY_H
 
 #include <linux/vmalloc.h>
 
 
 /*
 * The DMA channel used by the floppy controller cannot access data at
 * addresses >= 16MB
 *
 * Went back to the 1MB limit, as some people had problems with the floppy
 * driver otherwise. It doesn't matter much for performance anyway, as most
 * floppy accesses go through the track buffer.
 */
 #define _CROSS_64KB(a,s,vdma) \
 (!vdma && ((unsigned long)(a)/K_64 != ((unsigned long)(a) + (s) - 1) / K_64))
 
 #define CROSS_64KB(a,s) _CROSS_64KB(a,s,use_virtual_dma & 1)
 
 
 #define SW fd_routine[use_virtual_dma&1]
 #define CSW fd_routine[can_use_virtual_dma & 1]
 
 
 #define fd_inb(port)            readb(port)
 #define fd_outb(value, port)        writeb(value, port)
 
 #define fd_request_dma()        CSW._request_dma(FLOPPY_DMA,"floppy")
 #define fd_free_dma()           CSW._free_dma(FLOPPY_DMA)
 #define fd_enable_irq()         enable_irq(FLOPPY_IRQ)
 #define fd_disable_irq()        disable_irq(FLOPPY_IRQ)
 #define fd_free_irq()        free_irq(FLOPPY_IRQ, NULL)
 #define fd_get_dma_residue()    SW._get_dma_residue(FLOPPY_DMA)
 #define fd_dma_mem_alloc(size)    SW._dma_mem_alloc(size)
 #define fd_dma_setup(addr, size, mode, io) SW._dma_setup(addr, size, mode, io)
 
 #define FLOPPY_CAN_FALLBACK_ON_NODMA
 
 static int virtual_dma_count=0;
 static int virtual_dma_residue=0;
 static char *virtual_dma_addr=0;
 static int virtual_dma_mode=0;
 static int doing_pdma=0;
 
 static void floppy_hardint(int irq, void *dev_id, struct pt_regs * regs)
 {
 register unsigned char st;
 
 #undef TRACE_FLPY_INT
 
 #ifdef TRACE_FLPY_INT
 static int calls=0;
 static int bytes=0;
 static int dma_wait=0;
 #endif
 if (!doing_pdma) {
 floppy_interrupt(irq, dev_id, regs);
 return;
 }
 
 #ifdef TRACE_FLPY_INT
 if(!calls)
 bytes = virtual_dma_count;
 #endif
 
 {
 register int lcount;
 register char *lptr = virtual_dma_addr;
 
 for (lcount = virtual_dma_count; lcount; lcount--) {
 st = fd_inb(virtual_dma_port+4) & 0xa0 ;
 if (st != 0xa0)
 break;
 if (virtual_dma_mode) {
 fd_outb(*lptr, virtual_dma_port+5);
 } else {
 *lptr = fd_inb(virtual_dma_port+5);
 }
 lptr++;
 }
 virtual_dma_count = lcount;
 virtual_dma_addr = lptr;
 st = fd_inb(virtual_dma_port+4);
 }
 
 #ifdef TRACE_FLPY_INT
 calls++;
 #endif
 if (st == 0x20)
 return;
 if (!(st & 0x20)) {
 virtual_dma_residue += virtual_dma_count;
 virtual_dma_count = 0;
 #ifdef TRACE_FLPY_INT
 printk("count=%x, residue=%x calls=%d bytes=%d dma_wait=%d\n",
 virtual_dma_count, virtual_dma_residue, calls, bytes,
 dma_wait);
 calls = 0;
 dma_wait=0;
 #endif
 doing_pdma = 0;
 floppy_interrupt(irq, dev_id, regs);
 return;
 }
 #ifdef TRACE_FLPY_INT
 if (!virtual_dma_count)
 dma_wait++;
 #endif
 }
 
 static void fd_disable_dma(void)
 {
 if(! (can_use_virtual_dma & 1))
 disable_dma(FLOPPY_DMA);
 doing_pdma = 0;
 virtual_dma_residue += virtual_dma_count;
 virtual_dma_count=0;
 }
 
 static int vdma_request_dma(unsigned int dmanr, const char * device_id)
 {
 return 0;
 }
 
 static void vdma_nop(unsigned int dummy)
 {
 }
 
 
 static int vdma_get_dma_residue(unsigned int dummy)
 {
 return virtual_dma_count + virtual_dma_residue;
 }
 
 
 static int fd_request_irq(void)
 {
 if(can_use_virtual_dma)
 return request_irq(FLOPPY_IRQ, floppy_hardint,
 0, "floppy", NULL);
 else
 return request_irq(FLOPPY_IRQ, floppy_interrupt,
 0, "floppy", NULL);
 }
 
 static unsigned long dma_mem_alloc(unsigned long size)
 {
 return __get_dma_pages(GFP_KERNEL, get_order(size));
 }
 
 
 static unsigned long vdma_mem_alloc(unsigned long size)
 {
 return (unsigned long) vmalloc(size);
 
 }
 
 #define nodma_mem_alloc(size) vdma_mem_alloc(size)
 
 static void _fd_dma_mem_free(unsigned long addr, unsigned long size)
 {
 if((unsigned int) addr >= (unsigned int) high_memory)
 return vfree((void *)addr);
 else
 free_pages(addr, get_order(size));
 }
 
 #define fd_dma_mem_free(addr, size)  _fd_dma_mem_free(addr, size)
 
 static void _fd_chose_dma_mode(char *addr, unsigned long size)
 {
 if(can_use_virtual_dma == 2) {
 if((unsigned int) addr >= (unsigned int) high_memory ||
 virt_to_bus(addr) >= 0x1000000 ||
 _CROSS_64KB(addr, size, 0))
 use_virtual_dma = 1;
 else
 use_virtual_dma = 0;
 } else {
 use_virtual_dma = can_use_virtual_dma & 1;
 }
 }
 
 #define fd_chose_dma_mode(addr, size) _fd_chose_dma_mode(addr, size)
 
 
 static int vdma_dma_setup(char *addr, unsigned long size, int mode, int io)
 {
 doing_pdma = 1;
 virtual_dma_port = io;
 virtual_dma_mode = (mode  == DMA_MODE_WRITE);
 virtual_dma_addr = addr;
 virtual_dma_count = size;
 virtual_dma_residue = 0;
 return 0;
 }
 
 static int hard_dma_setup(char *addr, unsigned long size, int mode, int io)
 {
 #ifdef FLOPPY_SANITY_CHECK
 if (CROSS_64KB(addr, size)) {
 printk("DMA crossing 64-K boundary %p-%p\n", addr, addr+size);
 return -1;
 }
 #endif
 /* actual, physical DMA */
 doing_pdma = 0;
 clear_dma_ff(FLOPPY_DMA);
 set_dma_mode(FLOPPY_DMA,mode);
 set_dma_addr(FLOPPY_DMA,virt_to_bus(addr));
 set_dma_count(FLOPPY_DMA,size);
 enable_dma(FLOPPY_DMA);
 return 0;
 }
 
 static struct fd_routine_l {
 int (*_request_dma)(unsigned int dmanr, const char * device_id);
 void (*_free_dma)(unsigned int dmanr);
 int (*_get_dma_residue)(unsigned int dummy);
 unsigned long (*_dma_mem_alloc) (unsigned long size);
 int (*_dma_setup)(char *addr, unsigned long size, int mode, int io);
 } fd_routine[] = {
 {
 request_dma,
 free_dma,
 get_dma_residue,
 dma_mem_alloc,
 hard_dma_setup
 },
 {
 vdma_request_dma,
 vdma_nop,
 vdma_get_dma_residue,
 vdma_mem_alloc,
 vdma_dma_setup
 }
 };
 
 
 static int FDC1 = 0x3f0; /* Lies.  Floppy controller is memory mapped, not io mapped */
 static int FDC2 = -1;
 
 #define FLOPPY0_TYPE    0
 #define FLOPPY1_TYPE    0
 
 #define N_FDC 1
 #define N_DRIVE 8
 
 #define EXTRA_FLOPPY_PARAMS
 
 #endif /* __ASM_PARISC_FLOPPY_H */
 
 |