| Viewing file:  EigenvalueDecomposition.php (22.18 KB)      -rw-r--r-- Select action/file-type:
 
  (+) |  (+) |  (+) | Code (+) | Session (+) |  (+) | SDB (+) |  (+) |  (+) |  (+) |  (+) |  (+) | 
 
<?php/**
 *    @package JAMA
 *
 *    Class to obtain eigenvalues and eigenvectors of a real matrix.
 *
 *    If A is symmetric, then A = V*D*V' where the eigenvalue matrix D
 *    is diagonal and the eigenvector matrix V is orthogonal (i.e.
 *    A = V.times(D.times(V.transpose())) and V.times(V.transpose())
 *    equals the identity matrix).
 *
 *    If A is not symmetric, then the eigenvalue matrix D is block diagonal
 *    with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
 *    lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda].  The
 *    columns of V represent the eigenvectors in the sense that A*V = V*D,
 *    i.e. A.times(V) equals V.times(D).  The matrix V may be badly
 *    conditioned, or even singular, so the validity of the equation
 *    A = V*D*inverse(V) depends upon V.cond().
 *
 *    @author  Paul Meagher
 *    @license PHP v3.0
 *    @version 1.1
 */
 class EigenvalueDecomposition {
 
 /**
 *    Row and column dimension (square matrix).
 *    @var int
 */
 private $n;
 
 /**
 *    Internal symmetry flag.
 *    @var int
 */
 private $issymmetric;
 
 /**
 *    Arrays for internal storage of eigenvalues.
 *    @var array
 */
 private $d = array();
 private $e = array();
 
 /**
 *    Array for internal storage of eigenvectors.
 *    @var array
 */
 private $V = array();
 
 /**
 *    Array for internal storage of nonsymmetric Hessenberg form.
 *    @var array
 */
 private $H = array();
 
 /**
 *    Working storage for nonsymmetric algorithm.
 *    @var array
 */
 private $ort;
 
 /**
 *    Used for complex scalar division.
 *    @var float
 */
 private $cdivr;
 private $cdivi;
 
 
 /**
 *    Symmetric Householder reduction to tridiagonal form.
 *
 *    @access private
 */
 private function tred2 () {
 //  This is derived from the Algol procedures tred2 by
 //  Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
 //  Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 //  Fortran subroutine in EISPACK.
 $this->d = $this->V[$this->n-1];
 // Householder reduction to tridiagonal form.
 for ($i = $this->n-1; $i > 0; --$i) {
 $i_ = $i -1;
 // Scale to avoid under/overflow.
 $h = $scale = 0.0;
 $scale += array_sum(array_map(abs, $this->d));
 if ($scale == 0.0) {
 $this->e[$i] = $this->d[$i_];
 $this->d = array_slice($this->V[$i_], 0, $i_);
 for ($j = 0; $j < $i; ++$j) {
 $this->V[$j][$i] = $this->V[$i][$j] = 0.0;
 }
 } else {
 // Generate Householder vector.
 for ($k = 0; $k < $i; ++$k) {
 $this->d[$k] /= $scale;
 $h += pow($this->d[$k], 2);
 }
 $f = $this->d[$i_];
 $g = sqrt($h);
 if ($f > 0) {
 $g = -$g;
 }
 $this->e[$i] = $scale * $g;
 $h = $h - $f * $g;
 $this->d[$i_] = $f - $g;
 for ($j = 0; $j < $i; ++$j) {
 $this->e[$j] = 0.0;
 }
 // Apply similarity transformation to remaining columns.
 for ($j = 0; $j < $i; ++$j) {
 $f = $this->d[$j];
 $this->V[$j][$i] = $f;
 $g = $this->e[$j] + $this->V[$j][$j] * $f;
 for ($k = $j+1; $k <= $i_; ++$k) {
 $g += $this->V[$k][$j] * $this->d[$k];
 $this->e[$k] += $this->V[$k][$j] * $f;
 }
 $this->e[$j] = $g;
 }
 $f = 0.0;
 for ($j = 0; $j < $i; ++$j) {
 $this->e[$j] /= $h;
 $f += $this->e[$j] * $this->d[$j];
 }
 $hh = $f / (2 * $h);
 for ($j=0; $j < $i; ++$j) {
 $this->e[$j] -= $hh * $this->d[$j];
 }
 for ($j = 0; $j < $i; ++$j) {
 $f = $this->d[$j];
 $g = $this->e[$j];
 for ($k = $j; $k <= $i_; ++$k) {
 $this->V[$k][$j] -= ($f * $this->e[$k] + $g * $this->d[$k]);
 }
 $this->d[$j] = $this->V[$i-1][$j];
 $this->V[$i][$j] = 0.0;
 }
 }
 $this->d[$i] = $h;
 }
 
 // Accumulate transformations.
 for ($i = 0; $i < $this->n-1; ++$i) {
 $this->V[$this->n-1][$i] = $this->V[$i][$i];
 $this->V[$i][$i] = 1.0;
 $h = $this->d[$i+1];
 if ($h != 0.0) {
 for ($k = 0; $k <= $i; ++$k) {
 $this->d[$k] = $this->V[$k][$i+1] / $h;
 }
 for ($j = 0; $j <= $i; ++$j) {
 $g = 0.0;
 for ($k = 0; $k <= $i; ++$k) {
 $g += $this->V[$k][$i+1] * $this->V[$k][$j];
 }
 for ($k = 0; $k <= $i; ++$k) {
 $this->V[$k][$j] -= $g * $this->d[$k];
 }
 }
 }
 for ($k = 0; $k <= $i; ++$k) {
 $this->V[$k][$i+1] = 0.0;
 }
 }
 
 $this->d = $this->V[$this->n-1];
 $this->V[$this->n-1] = array_fill(0, $j, 0.0);
 $this->V[$this->n-1][$this->n-1] = 1.0;
 $this->e[0] = 0.0;
 }
 
 
 /**
 *    Symmetric tridiagonal QL algorithm.
 *
 *    This is derived from the Algol procedures tql2, by
 *    Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
 *    Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
 *    Fortran subroutine in EISPACK.
 *
 *    @access private
 */
 private function tql2() {
 for ($i = 1; $i < $this->n; ++$i) {
 $this->e[$i-1] = $this->e[$i];
 }
 $this->e[$this->n-1] = 0.0;
 $f = 0.0;
 $tst1 = 0.0;
 $eps  = pow(2.0,-52.0);
 
 for ($l = 0; $l < $this->n; ++$l) {
 // Find small subdiagonal element
 $tst1 = max($tst1, abs($this->d[$l]) + abs($this->e[$l]));
 $m = $l;
 while ($m < $this->n) {
 if (abs($this->e[$m]) <= $eps * $tst1)
 break;
 ++$m;
 }
 // If m == l, $this->d[l] is an eigenvalue,
 // otherwise, iterate.
 if ($m > $l) {
 $iter = 0;
 do {
 // Could check iteration count here.
 $iter += 1;
 // Compute implicit shift
 $g = $this->d[$l];
 $p = ($this->d[$l+1] - $g) / (2.0 * $this->e[$l]);
 $r = hypo($p, 1.0);
 if ($p < 0)
 $r *= -1;
 $this->d[$l] = $this->e[$l] / ($p + $r);
 $this->d[$l+1] = $this->e[$l] * ($p + $r);
 $dl1 = $this->d[$l+1];
 $h = $g - $this->d[$l];
 for ($i = $l + 2; $i < $this->n; ++$i)
 $this->d[$i] -= $h;
 $f += $h;
 // Implicit QL transformation.
 $p = $this->d[$m];
 $c = 1.0;
 $c2 = $c3 = $c;
 $el1 = $this->e[$l + 1];
 $s = $s2 = 0.0;
 for ($i = $m-1; $i >= $l; --$i) {
 $c3 = $c2;
 $c2 = $c;
 $s2 = $s;
 $g  = $c * $this->e[$i];
 $h  = $c * $p;
 $r  = hypo($p, $this->e[$i]);
 $this->e[$i+1] = $s * $r;
 $s = $this->e[$i] / $r;
 $c = $p / $r;
 $p = $c * $this->d[$i] - $s * $g;
 $this->d[$i+1] = $h + $s * ($c * $g + $s * $this->d[$i]);
 // Accumulate transformation.
 for ($k = 0; $k < $this->n; ++$k) {
 $h = $this->V[$k][$i+1];
 $this->V[$k][$i+1] = $s * $this->V[$k][$i] + $c * $h;
 $this->V[$k][$i] = $c * $this->V[$k][$i] - $s * $h;
 }
 }
 $p = -$s * $s2 * $c3 * $el1 * $this->e[$l] / $dl1;
 $this->e[$l] = $s * $p;
 $this->d[$l] = $c * $p;
 // Check for convergence.
 } while (abs($this->e[$l]) > $eps * $tst1);
 }
 $this->d[$l] = $this->d[$l] + $f;
 $this->e[$l] = 0.0;
 }
 
 // Sort eigenvalues and corresponding vectors.
 for ($i = 0; $i < $this->n - 1; ++$i) {
 $k = $i;
 $p = $this->d[$i];
 for ($j = $i+1; $j < $this->n; ++$j) {
 if ($this->d[$j] < $p) {
 $k = $j;
 $p = $this->d[$j];
 }
 }
 if ($k != $i) {
 $this->d[$k] = $this->d[$i];
 $this->d[$i] = $p;
 for ($j = 0; $j < $this->n; ++$j) {
 $p = $this->V[$j][$i];
 $this->V[$j][$i] = $this->V[$j][$k];
 $this->V[$j][$k] = $p;
 }
 }
 }
 }
 
 
 /**
 *    Nonsymmetric reduction to Hessenberg form.
 *
 *    This is derived from the Algol procedures orthes and ortran,
 *    by Martin and Wilkinson, Handbook for Auto. Comp.,
 *    Vol.ii-Linear Algebra, and the corresponding
 *    Fortran subroutines in EISPACK.
 *
 *    @access private
 */
 private function orthes () {
 $low  = 0;
 $high = $this->n-1;
 
 for ($m = $low+1; $m <= $high-1; ++$m) {
 // Scale column.
 $scale = 0.0;
 for ($i = $m; $i <= $high; ++$i) {
 $scale = $scale + abs($this->H[$i][$m-1]);
 }
 if ($scale != 0.0) {
 // Compute Householder transformation.
 $h = 0.0;
 for ($i = $high; $i >= $m; --$i) {
 $this->ort[$i] = $this->H[$i][$m-1] / $scale;
 $h += $this->ort[$i] * $this->ort[$i];
 }
 $g = sqrt($h);
 if ($this->ort[$m] > 0) {
 $g *= -1;
 }
 $h -= $this->ort[$m] * $g;
 $this->ort[$m] -= $g;
 // Apply Householder similarity transformation
 // H = (I -u * u' / h) * H * (I -u * u') / h)
 for ($j = $m; $j < $this->n; ++$j) {
 $f = 0.0;
 for ($i = $high; $i >= $m; --$i) {
 $f += $this->ort[$i] * $this->H[$i][$j];
 }
 $f /= $h;
 for ($i = $m; $i <= $high; ++$i) {
 $this->H[$i][$j] -= $f * $this->ort[$i];
 }
 }
 for ($i = 0; $i <= $high; ++$i) {
 $f = 0.0;
 for ($j = $high; $j >= $m; --$j) {
 $f += $this->ort[$j] * $this->H[$i][$j];
 }
 $f = $f / $h;
 for ($j = $m; $j <= $high; ++$j) {
 $this->H[$i][$j] -= $f * $this->ort[$j];
 }
 }
 $this->ort[$m] = $scale * $this->ort[$m];
 $this->H[$m][$m-1] = $scale * $g;
 }
 }
 
 // Accumulate transformations (Algol's ortran).
 for ($i = 0; $i < $this->n; ++$i) {
 for ($j = 0; $j < $this->n; ++$j) {
 $this->V[$i][$j] = ($i == $j ? 1.0 : 0.0);
 }
 }
 for ($m = $high-1; $m >= $low+1; --$m) {
 if ($this->H[$m][$m-1] != 0.0) {
 for ($i = $m+1; $i <= $high; ++$i) {
 $this->ort[$i] = $this->H[$i][$m-1];
 }
 for ($j = $m; $j <= $high; ++$j) {
 $g = 0.0;
 for ($i = $m; $i <= $high; ++$i) {
 $g += $this->ort[$i] * $this->V[$i][$j];
 }
 // Double division avoids possible underflow
 $g = ($g / $this->ort[$m]) / $this->H[$m][$m-1];
 for ($i = $m; $i <= $high; ++$i) {
 $this->V[$i][$j] += $g * $this->ort[$i];
 }
 }
 }
 }
 }
 
 
 /**
 *    Performs complex division.
 *
 *    @access private
 */
 private function cdiv($xr, $xi, $yr, $yi) {
 if (abs($yr) > abs($yi)) {
 $r = $yi / $yr;
 $d = $yr + $r * $yi;
 $this->cdivr = ($xr + $r * $xi) / $d;
 $this->cdivi = ($xi - $r * $xr) / $d;
 } else {
 $r = $yr / $yi;
 $d = $yi + $r * $yr;
 $this->cdivr = ($r * $xr + $xi) / $d;
 $this->cdivi = ($r * $xi - $xr) / $d;
 }
 }
 
 
 /**
 *    Nonsymmetric reduction from Hessenberg to real Schur form.
 *
 *    Code is derived from the Algol procedure hqr2,
 *    by Martin and Wilkinson, Handbook for Auto. Comp.,
 *    Vol.ii-Linear Algebra, and the corresponding
 *    Fortran subroutine in EISPACK.
 *
 *    @access private
 */
 private function hqr2 () {
 //  Initialize
 $nn = $this->n;
 $n  = $nn - 1;
 $low = 0;
 $high = $nn - 1;
 $eps = pow(2.0, -52.0);
 $exshift = 0.0;
 $p = $q = $r = $s = $z = 0;
 // Store roots isolated by balanc and compute matrix norm
 $norm = 0.0;
 
 for ($i = 0; $i < $nn; ++$i) {
 if (($i < $low) OR ($i > $high)) {
 $this->d[$i] = $this->H[$i][$i];
 $this->e[$i] = 0.0;
 }
 for ($j = max($i-1, 0); $j < $nn; ++$j) {
 $norm = $norm + abs($this->H[$i][$j]);
 }
 }
 
 // Outer loop over eigenvalue index
 $iter = 0;
 while ($n >= $low) {
 // Look for single small sub-diagonal element
 $l = $n;
 while ($l > $low) {
 $s = abs($this->H[$l-1][$l-1]) + abs($this->H[$l][$l]);
 if ($s == 0.0) {
 $s = $norm;
 }
 if (abs($this->H[$l][$l-1]) < $eps * $s) {
 break;
 }
 --$l;
 }
 // Check for convergence
 // One root found
 if ($l == $n) {
 $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
 $this->d[$n] = $this->H[$n][$n];
 $this->e[$n] = 0.0;
 --$n;
 $iter = 0;
 // Two roots found
 } else if ($l == $n-1) {
 $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
 $p = ($this->H[$n-1][$n-1] - $this->H[$n][$n]) / 2.0;
 $q = $p * $p + $w;
 $z = sqrt(abs($q));
 $this->H[$n][$n] = $this->H[$n][$n] + $exshift;
 $this->H[$n-1][$n-1] = $this->H[$n-1][$n-1] + $exshift;
 $x = $this->H[$n][$n];
 // Real pair
 if ($q >= 0) {
 if ($p >= 0) {
 $z = $p + $z;
 } else {
 $z = $p - $z;
 }
 $this->d[$n-1] = $x + $z;
 $this->d[$n] = $this->d[$n-1];
 if ($z != 0.0) {
 $this->d[$n] = $x - $w / $z;
 }
 $this->e[$n-1] = 0.0;
 $this->e[$n] = 0.0;
 $x = $this->H[$n][$n-1];
 $s = abs($x) + abs($z);
 $p = $x / $s;
 $q = $z / $s;
 $r = sqrt($p * $p + $q * $q);
 $p = $p / $r;
 $q = $q / $r;
 // Row modification
 for ($j = $n-1; $j < $nn; ++$j) {
 $z = $this->H[$n-1][$j];
 $this->H[$n-1][$j] = $q * $z + $p * $this->H[$n][$j];
 $this->H[$n][$j] = $q * $this->H[$n][$j] - $p * $z;
 }
 // Column modification
 for ($i = 0; $i <= n; ++$i) {
 $z = $this->H[$i][$n-1];
 $this->H[$i][$n-1] = $q * $z + $p * $this->H[$i][$n];
 $this->H[$i][$n] = $q * $this->H[$i][$n] - $p * $z;
 }
 // Accumulate transformations
 for ($i = $low; $i <= $high; ++$i) {
 $z = $this->V[$i][$n-1];
 $this->V[$i][$n-1] = $q * $z + $p * $this->V[$i][$n];
 $this->V[$i][$n] = $q * $this->V[$i][$n] - $p * $z;
 }
 // Complex pair
 } else {
 $this->d[$n-1] = $x + $p;
 $this->d[$n] = $x + $p;
 $this->e[$n-1] = $z;
 $this->e[$n] = -$z;
 }
 $n = $n - 2;
 $iter = 0;
 // No convergence yet
 } else {
 // Form shift
 $x = $this->H[$n][$n];
 $y = 0.0;
 $w = 0.0;
 if ($l < $n) {
 $y = $this->H[$n-1][$n-1];
 $w = $this->H[$n][$n-1] * $this->H[$n-1][$n];
 }
 // Wilkinson's original ad hoc shift
 if ($iter == 10) {
 $exshift += $x;
 for ($i = $low; $i <= $n; ++$i) {
 $this->H[$i][$i] -= $x;
 }
 $s = abs($this->H[$n][$n-1]) + abs($this->H[$n-1][$n-2]);
 $x = $y = 0.75 * $s;
 $w = -0.4375 * $s * $s;
 }
 // MATLAB's new ad hoc shift
 if ($iter == 30) {
 $s = ($y - $x) / 2.0;
 $s = $s * $s + $w;
 if ($s > 0) {
 $s = sqrt($s);
 if ($y < $x) {
 $s = -$s;
 }
 $s = $x - $w / (($y - $x) / 2.0 + $s);
 for ($i = $low; $i <= $n; ++$i) {
 $this->H[$i][$i] -= $s;
 }
 $exshift += $s;
 $x = $y = $w = 0.964;
 }
 }
 // Could check iteration count here.
 $iter = $iter + 1;
 // Look for two consecutive small sub-diagonal elements
 $m = $n - 2;
 while ($m >= $l) {
 $z = $this->H[$m][$m];
 $r = $x - $z;
 $s = $y - $z;
 $p = ($r * $s - $w) / $this->H[$m+1][$m] + $this->H[$m][$m+1];
 $q = $this->H[$m+1][$m+1] - $z - $r - $s;
 $r = $this->H[$m+2][$m+1];
 $s = abs($p) + abs($q) + abs($r);
 $p = $p / $s;
 $q = $q / $s;
 $r = $r / $s;
 if ($m == $l) {
 break;
 }
 if (abs($this->H[$m][$m-1]) * (abs($q) + abs($r)) <
 $eps * (abs($p) * (abs($this->H[$m-1][$m-1]) + abs($z) + abs($this->H[$m+1][$m+1])))) {
 break;
 }
 --$m;
 }
 for ($i = $m + 2; $i <= $n; ++$i) {
 $this->H[$i][$i-2] = 0.0;
 if ($i > $m+2) {
 $this->H[$i][$i-3] = 0.0;
 }
 }
 // Double QR step involving rows l:n and columns m:n
 for ($k = $m; $k <= $n-1; ++$k) {
 $notlast = ($k != $n-1);
 if ($k != $m) {
 $p = $this->H[$k][$k-1];
 $q = $this->H[$k+1][$k-1];
 $r = ($notlast ? $this->H[$k+2][$k-1] : 0.0);
 $x = abs($p) + abs($q) + abs($r);
 if ($x != 0.0) {
 $p = $p / $x;
 $q = $q / $x;
 $r = $r / $x;
 }
 }
 if ($x == 0.0) {
 break;
 }
 $s = sqrt($p * $p + $q * $q + $r * $r);
 if ($p < 0) {
 $s = -$s;
 }
 if ($s != 0) {
 if ($k != $m) {
 $this->H[$k][$k-1] = -$s * $x;
 } elseif ($l != $m) {
 $this->H[$k][$k-1] = -$this->H[$k][$k-1];
 }
 $p = $p + $s;
 $x = $p / $s;
 $y = $q / $s;
 $z = $r / $s;
 $q = $q / $p;
 $r = $r / $p;
 // Row modification
 for ($j = $k; $j < $nn; ++$j) {
 $p = $this->H[$k][$j] + $q * $this->H[$k+1][$j];
 if ($notlast) {
 $p = $p + $r * $this->H[$k+2][$j];
 $this->H[$k+2][$j] = $this->H[$k+2][$j] - $p * $z;
 }
 $this->H[$k][$j] = $this->H[$k][$j] - $p * $x;
 $this->H[$k+1][$j] = $this->H[$k+1][$j] - $p * $y;
 }
 // Column modification
 for ($i = 0; $i <= min($n, $k+3); ++$i) {
 $p = $x * $this->H[$i][$k] + $y * $this->H[$i][$k+1];
 if ($notlast) {
 $p = $p + $z * $this->H[$i][$k+2];
 $this->H[$i][$k+2] = $this->H[$i][$k+2] - $p * $r;
 }
 $this->H[$i][$k] = $this->H[$i][$k] - $p;
 $this->H[$i][$k+1] = $this->H[$i][$k+1] - $p * $q;
 }
 // Accumulate transformations
 for ($i = $low; $i <= $high; ++$i) {
 $p = $x * $this->V[$i][$k] + $y * $this->V[$i][$k+1];
 if ($notlast) {
 $p = $p + $z * $this->V[$i][$k+2];
 $this->V[$i][$k+2] = $this->V[$i][$k+2] - $p * $r;
 }
 $this->V[$i][$k] = $this->V[$i][$k] - $p;
 $this->V[$i][$k+1] = $this->V[$i][$k+1] - $p * $q;
 }
 }  // ($s != 0)
 }  // k loop
 }  // check convergence
 }  // while ($n >= $low)
 
 // Backsubstitute to find vectors of upper triangular form
 if ($norm == 0.0) {
 return;
 }
 
 for ($n = $nn-1; $n >= 0; --$n) {
 $p = $this->d[$n];
 $q = $this->e[$n];
 // Real vector
 if ($q == 0) {
 $l = $n;
 $this->H[$n][$n] = 1.0;
 for ($i = $n-1; $i >= 0; --$i) {
 $w = $this->H[$i][$i] - $p;
 $r = 0.0;
 for ($j = $l; $j <= $n; ++$j) {
 $r = $r + $this->H[$i][$j] * $this->H[$j][$n];
 }
 if ($this->e[$i] < 0.0) {
 $z = $w;
 $s = $r;
 } else {
 $l = $i;
 if ($this->e[$i] == 0.0) {
 if ($w != 0.0) {
 $this->H[$i][$n] = -$r / $w;
 } else {
 $this->H[$i][$n] = -$r / ($eps * $norm);
 }
 // Solve real equations
 } else {
 $x = $this->H[$i][$i+1];
 $y = $this->H[$i+1][$i];
 $q = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i];
 $t = ($x * $s - $z * $r) / $q;
 $this->H[$i][$n] = $t;
 if (abs($x) > abs($z)) {
 $this->H[$i+1][$n] = (-$r - $w * $t) / $x;
 } else {
 $this->H[$i+1][$n] = (-$s - $y * $t) / $z;
 }
 }
 // Overflow control
 $t = abs($this->H[$i][$n]);
 if (($eps * $t) * $t > 1) {
 for ($j = $i; $j <= $n; ++$j) {
 $this->H[$j][$n] = $this->H[$j][$n] / $t;
 }
 }
 }
 }
 // Complex vector
 } else if ($q < 0) {
 $l = $n-1;
 // Last vector component imaginary so matrix is triangular
 if (abs($this->H[$n][$n-1]) > abs($this->H[$n-1][$n])) {
 $this->H[$n-1][$n-1] = $q / $this->H[$n][$n-1];
 $this->H[$n-1][$n] = -($this->H[$n][$n] - $p) / $this->H[$n][$n-1];
 } else {
 $this->cdiv(0.0, -$this->H[$n-1][$n], $this->H[$n-1][$n-1] - $p, $q);
 $this->H[$n-1][$n-1] = $this->cdivr;
 $this->H[$n-1][$n]   = $this->cdivi;
 }
 $this->H[$n][$n-1] = 0.0;
 $this->H[$n][$n] = 1.0;
 for ($i = $n-2; $i >= 0; --$i) {
 // double ra,sa,vr,vi;
 $ra = 0.0;
 $sa = 0.0;
 for ($j = $l; $j <= $n; ++$j) {
 $ra = $ra + $this->H[$i][$j] * $this->H[$j][$n-1];
 $sa = $sa + $this->H[$i][$j] * $this->H[$j][$n];
 }
 $w = $this->H[$i][$i] - $p;
 if ($this->e[$i] < 0.0) {
 $z = $w;
 $r = $ra;
 $s = $sa;
 } else {
 $l = $i;
 if ($this->e[$i] == 0) {
 $this->cdiv(-$ra, -$sa, $w, $q);
 $this->H[$i][$n-1] = $this->cdivr;
 $this->H[$i][$n]   = $this->cdivi;
 } else {
 // Solve complex equations
 $x = $this->H[$i][$i+1];
 $y = $this->H[$i+1][$i];
 $vr = ($this->d[$i] - $p) * ($this->d[$i] - $p) + $this->e[$i] * $this->e[$i] - $q * $q;
 $vi = ($this->d[$i] - $p) * 2.0 * $q;
 if ($vr == 0.0 & $vi == 0.0) {
 $vr = $eps * $norm * (abs($w) + abs($q) + abs($x) + abs($y) + abs($z));
 }
 $this->cdiv($x * $r - $z * $ra + $q * $sa, $x * $s - $z * $sa - $q * $ra, $vr, $vi);
 $this->H[$i][$n-1] = $this->cdivr;
 $this->H[$i][$n]   = $this->cdivi;
 if (abs($x) > (abs($z) + abs($q))) {
 $this->H[$i+1][$n-1] = (-$ra - $w * $this->H[$i][$n-1] + $q * $this->H[$i][$n]) / $x;
 $this->H[$i+1][$n] = (-$sa - $w * $this->H[$i][$n] - $q * $this->H[$i][$n-1]) / $x;
 } else {
 $this->cdiv(-$r - $y * $this->H[$i][$n-1], -$s - $y * $this->H[$i][$n], $z, $q);
 $this->H[$i+1][$n-1] = $this->cdivr;
 $this->H[$i+1][$n]   = $this->cdivi;
 }
 }
 // Overflow control
 $t = max(abs($this->H[$i][$n-1]),abs($this->H[$i][$n]));
 if (($eps * $t) * $t > 1) {
 for ($j = $i; $j <= $n; ++$j) {
 $this->H[$j][$n-1] = $this->H[$j][$n-1] / $t;
 $this->H[$j][$n]   = $this->H[$j][$n] / $t;
 }
 }
 } // end else
 } // end for
 } // end else for complex case
 } // end for
 
 // Vectors of isolated roots
 for ($i = 0; $i < $nn; ++$i) {
 if ($i < $low | $i > $high) {
 for ($j = $i; $j < $nn; ++$j) {
 $this->V[$i][$j] = $this->H[$i][$j];
 }
 }
 }
 
 // Back transformation to get eigenvectors of original matrix
 for ($j = $nn-1; $j >= $low; --$j) {
 for ($i = $low; $i <= $high; ++$i) {
 $z = 0.0;
 for ($k = $low; $k <= min($j,$high); ++$k) {
 $z = $z + $this->V[$i][$k] * $this->H[$k][$j];
 }
 $this->V[$i][$j] = $z;
 }
 }
 } // end hqr2
 
 
 /**
 *    Constructor: Check for symmetry, then construct the eigenvalue decomposition
 *
 *    @access public
 *    @param A  Square matrix
 *    @return Structure to access D and V.
 */
 public function __construct($Arg) {
 $this->A = $Arg->getArray();
 $this->n = $Arg->getColumnDimension();
 
 $issymmetric = true;
 for ($j = 0; ($j < $this->n) & $issymmetric; ++$j) {
 for ($i = 0; ($i < $this->n) & $issymmetric; ++$i) {
 $issymmetric = ($this->A[$i][$j] == $this->A[$j][$i]);
 }
 }
 
 if ($issymmetric) {
 $this->V = $this->A;
 // Tridiagonalize.
 $this->tred2();
 // Diagonalize.
 $this->tql2();
 } else {
 $this->H = $this->A;
 $this->ort = array();
 // Reduce to Hessenberg form.
 $this->orthes();
 // Reduce Hessenberg to real Schur form.
 $this->hqr2();
 }
 }
 
 
 /**
 *    Return the eigenvector matrix
 *
 *    @access public
 *    @return V
 */
 public function getV() {
 return new Matrix($this->V, $this->n, $this->n);
 }
 
 
 /**
 *    Return the real parts of the eigenvalues
 *
 *    @access public
 *    @return real(diag(D))
 */
 public function getRealEigenvalues() {
 return $this->d;
 }
 
 
 /**
 *    Return the imaginary parts of the eigenvalues
 *
 *    @access public
 *    @return imag(diag(D))
 */
 public function getImagEigenvalues() {
 return $this->e;
 }
 
 
 /**
 *    Return the block diagonal eigenvalue matrix
 *
 *    @access public
 *    @return D
 */
 public function getD() {
 for ($i = 0; $i < $this->n; ++$i) {
 $D[$i] = array_fill(0, $this->n, 0.0);
 $D[$i][$i] = $this->d[$i];
 if ($this->e[$i] == 0) {
 continue;
 }
 $o = ($this->e[$i] > 0) ? $i + 1 : $i - 1;
 $D[$i][$o] = $this->e[$i];
 }
 return new Matrix($D);
 }
 
 }    //    class EigenvalueDecomposition
 
 |